Kurs:Analysis (Osnabrück 2013-2015)/Teil I/Arbeitsblatt 3/latex
\setcounter{section}{3}
\zwischenueberschrift{Übungsaufgaben}
\inputaufgabe
{}
{
Zeige, und zwar allein unter Bezug auf Rechengesetze in $\Z$, dass die durch
\aufzaehlungzwei {
\mathdisp {{ \frac{ a }{ c } } \cdot { \frac{ b }{ d } } \defeq { \frac{ ab }{ cd } }} { }
} {
\mathdisp {{ \frac{ a }{ c } } + { \frac{ b }{ d } } \defeq { \frac{ ad+bc }{ cd } }} { }
}
definierte Addition und Multiplikation auf den rationalen Zahlen wohldefiniert ist, und dass die Assoziativität, die Kommutativität und das Distributivgesetz gelten.
}
{} {}
\inputaufgabe
{}
{
Es seien $x,y,z,w$ Elemente in einem \definitionsverweis {Körper}{}{,} wobei $z$ und $w$ nicht $0$ seien. Beweise die folgenden Bruchrechenregeln.
\aufzaehlungacht{
\mavergleichskettedisp
{\vergleichskette
{ { \frac{ x }{ 1 } }
}
{ =} { x
}
{ } {
}
{ } {
}
{ } {
}
}
{}{}{,}
}{
\mavergleichskettedisp
{\vergleichskette
{ { \frac{ 1 }{ z } }
}
{ =} { z^{-1}
}
{ } {
}
{ } {
}
{ } {
}
}
{}{}{,}
}{
\mavergleichskettedisp
{\vergleichskette
{ { \frac{ 1 }{ -1 } }
}
{ =} { -1
}
{ } {
}
{ } {
}
{ } {
}
}
{}{}{,}
}{
\mavergleichskettedisp
{\vergleichskette
{ { \frac{ 0 }{ z } }
}
{ =} {0
}
{ } {
}
{ } {
}
{ } {
}
}
{}{}{,}
}{
\mavergleichskettedisp
{\vergleichskette
{ { \frac{ z }{ z } }
}
{ =} { 1
}
{ } {
}
{ } {
}
{ } {
}
}
{}{}{,}
}{
\mavergleichskettedisp
{\vergleichskette
{ { \frac{ x }{ z } }
}
{ =} { { \frac{ xw }{ zw } }
}
{ } {
}
{ } {
}
{ } {
}
}
{}{}{,}
}{
\mavergleichskettedisp
{\vergleichskette
{ { \frac{ x }{ z } } \cdot { \frac{ y }{ w } }
}
{ =} { { \frac{ xy }{ zw } }
}
{ } {
}
{ } {
}
{ } {
}
}
{}{}{,}
}{
\mavergleichskettedisp
{\vergleichskette
{ { \frac{ x }{ z } } + { \frac{ y }{ w } }
}
{ =} { { \frac{ xw+yz }{ zw } }
}
{ } {
}
{ } {
}
{ } {
}
}
{}{}{.}
}
Gilt die zu (8) analoge Formel, die entsteht, wenn man die Addition mit der Multiplikation
\zusatzklammer {und die Subtraktion mit der Division} {} {} vertauscht, also
\mavergleichskettedisp
{\vergleichskette
{ (x-z) \cdot (y-w)
}
{ =} { (x+w)(y+z)-(z+w)
}
{ } {
}
{ } {
}
{ } {
}
}
{}{}{?}
Zeige, dass die \anfuehrung{beliebte Formel}{}
\mavergleichskettedisp
{\vergleichskette
{ { \frac{ x }{ z } } + { \frac{ y }{ w } }
}
{ =} {{ \frac{ x+y }{ z+w } }
}
{ } {
}
{ } {
}
{ } {
}
}
{}{}{}
nicht gilt.
}
{} {}
\inputaufgabe
{}
{
Zeige, dass in einem
\definitionsverweis {Körper}{}{}
das \anfuehrung{umgekehrte Distributivgesetz}{,} also
\mavergleichskettedisp
{\vergleichskette
{ a+(bc)
}
{ =} { (a+b) \cdot (a+c)
}
{ } {
}
{ } {
}
{ } {
}
}
{}{}{,}
nicht gilt.
}
{} {}
\inputaufgabe
{}
{
Beschreibe und beweise Regeln für die Addition und die Multiplikation von geraden und ungeraden ganzen Zahlen. Man definiere auf der zweielementigen Menge
\mathdisp {\{G,U\}} { }
eine \anfuehrung{Addition}{} und eine \anfuehrung{Multiplikation}{,} die diese Regeln \anfuehrung{repräsentieren}{.}
}
{} {}
\inputaufgabe
{}
{
Zeige, dass die einelementige Menge $\{0\}$ alle Körperaxiome erfüllt mit der einzigen Ausnahme, dass
\mavergleichskette
{\vergleichskette
{ 0
}
{ = }{ 1
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}
ist.
}
{} {}
\inputaufgabe
{}
{
Es sei $K$ ein
\definitionsverweis {Körper}{}{.} Zeige, dass man jeder natürlichen Zahl
\mavergleichskette
{\vergleichskette
{n
}
{ \in }{ \N
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}
ein Körperelement $n_K$ zuordnen kann, derart, dass $0_K$ das Nullelement in $K$ und $1_K$ das Einselement in $K$ ist und dass
\mavergleichskettedisp
{\vergleichskette
{ (n+1)_K
}
{ =} { n_K+1_K
}
{ } {
}
{ } {
}
{ } {
}
}
{}{}{}
gilt. Zeige, dass diese Zuordnung die Eigenschaften
\mathdisp {(n+m)_K = n_K + m_K \text{ und } (nm)_K = n_K \cdot m_K} { }
besitzt.
Erweitere diese Zuordnung auf die ganzen Zahlen $\Z$ und zeige, dass die angeführten strukturellen Eigenschaften ebenfalls gelten.
}
{} {}
\inputaufgabe
{}
{
Skizziere den \definitionsverweis {Graphen}{}{} der reellen Addition \maabbeledisp {+} {\R \times \R} {\R } {(x,y)} {x+y } {,} und den Graphen der reellen Multiplikation \maabbeledisp {\cdot} {\R \times \R} {\R } {(x,y)} {x \cdot y } {.}
}
{} {}
\inputaufgabegibtloesung
{}
{
Zwei Personen, \mathkor {} {A} {und} {B} {,} liegen unter einer Palme, $A$ besitzt $2$ Fladenbrote und $B$ besitzt $3$ Fladenbrote. Eine dritte Person $C$ kommt hinzu, die kein Fladenbrot besitzt, aber $5$ Taler. Die drei Personen werden sich einig, für die $5$ Taler die Fladenbrote untereinander gleichmäßig aufzuteilen. Wie viele Taler gibt $C$ an $A$ und an $B$?
}
{} {}
\inputaufgabe
{}
{
Man gebe die Antworten als Bruch \zusatzklammer {bezogen auf das angegebene Vergleichsmaß} {} {:} Um wie viel ist eine Dreiviertelstunde länger als eine halbe Stunde, und um wie viel ist eine halbe Stunde kürzer als eine Dreiviertelstunde?
}
{} {}
\inputaufgabe
{}
{
Man erläutere die Uhrzeitangaben \anfuehrung{halb fünf}{,} \anfuehrung{viertel fünf}{,} \anfuehrung{drei viertel fünf}{.} Was würde \anfuehrung{ein sechstel fünf}{} und \anfuehrung{drei siebtel fünf}{} bedeuten?
}
{} {}
\inputaufgabegibtloesung
{}
{
Zeige, dass die
\definitionsverweis {Binomialkoeffizienten}{}{}
die rekursive Beziehung
\mavergleichskettedisp
{\vergleichskette
{ \binom { n+1 } { k }
}
{ =} { \binom { n } { k } + \binom { n } { k-1 }
}
{ } {
}
{ } {
}
{ } {
}
}
{}{}{}
erfüllen.
}
{} {}
\inputaufgabe
{}
{
Zeige, dass die \definitionsverweis {Binomialkoeffizienten}{}{} natürliche Zahlen sind.
}
{} {}
\inputaufgabe
{}
{
Beweise die Formel
\mavergleichskettedisp
{\vergleichskette
{ 2^n
}
{ =} { \sum_{k = 0}^n \binom { n } { k }
}
{ } {
}
{ } {
}
{ } {
}
}
{}{}{.}
}
{} {}
\inputaufgabegibtloesung
{}
{
Es sei $M$ eine $n$-elementige Menge. Zeige, dass die Anzahl der $k$-elementigen Teilmengen von $M$ gleich dem
\definitionsverweis {Binomialkoeffizienten}{}{}
\mathdisp {\binom { n } { k }} { }
ist.
}
{} {}
\inputaufgabegibtloesung
{}
{
Beweise durch Induktion, dass für
\mavergleichskette
{\vergleichskette
{n
}
{ \geq }{10
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}
die Abschätzung
\mavergleichskettedisp
{\vergleichskette
{3^n
}
{ \geq} { n^4
}
{ } {
}
{ } {
}
{ } {
}
}
{}{}{}
gilt.
}
{} {}
\zwischenueberschrift{Aufgaben zum Abgeben}
\inputaufgabe
{2}
{
Zeige für einen \definitionsverweis {Körper}{}{} $K$ die folgenden Eigenschaften.
(1) Für jedes
\mavergleichskette
{\vergleichskette
{ a
}
{ \in }{ K
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}
ist die
\definitionsverweis {Abbildung}{}{}
\maabbeledisp {\alpha_a} {K} {K
} {x} {x+a
} {,}
\definitionsverweis {bijektiv}{}{.}
(2) Für jedes
\mathbed {b \in K} {}
{b \neq 0} {}
{} {} {} {,}
ist die Abbildung
\maabbeledisp {\mu_b} {K} {K
} {x} {bx
} {,}
bijektiv.
}
{} {}
\inputaufgabe
{5}
{
Beweise das allgemeine Distributivgesetz für einen \definitionsverweis {Körper}{}{.}
}
{} {}
\inputaufgabe
{3}
{
Zeige, dass die \anfuehrung{Rechenregel}{}
\mavergleichskettedisp
{\vergleichskette
{ { \frac{ a }{ b } } + { \frac{ c }{ d } }
}
{ =} { { \frac{ a+c }{ b+d } }
}
{ } {
}
{ } {
}
{ } {
}
}
{}{}{}
bei
\mavergleichskette
{\vergleichskette
{ a,c
}
{ \in }{ \N_+
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}
\zusatzklammer {und
\mavergleichskette
{\vergleichskette
{ b, d, b+d
}
{ \in }{ \Z \setminus \{0\}
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}} {} {}
niemals gilt. Man gebe ein Beispiel mit
\mavergleichskette
{\vergleichskette
{ a,b,c,d,b+d
}
{ \neq }{ 0
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{,}
wo diese Regel gilt.
}
{} {}
\inputaufgabe
{4}
{
Wir betrachten die Menge
\mavergleichskettedisp
{\vergleichskette
{K
}
{ =} {\Q \times \Q
}
{ =} {{ \left\{ (a,b) \mid a,b \in \Q \right\} }
}
{ } {
}
{ } {
}
}
{}{}{}
mit den beiden ausgezeichneten Elementen
\mathdisp {0=(0,0) \text{ und } 1=(1,0)} { , }
der Addition
\mavergleichskettedisp
{\vergleichskette
{ (a,b)+(c,d)
}
{ \defeq} {(a+c, b+d)
}
{ } {
}
{ } {
}
{ } {
}
}
{}{}{}
und der Multiplikation
\mavergleichskettedisp
{\vergleichskette
{ (a,b) \cdot (c,d)
}
{ \defeq} {(ac-bd, ad+bc)
}
{ } {
}
{ } {
}
{ } {
}
}
{}{}{.}
Zeige, dass $K$ mit diesen Operationen ein
\definitionsverweis {Körper}{}{}
ist.
}
{} {}
\inputaufgabe
{3}
{
Beweise die Formel
\mavergleichskettedisp
{\vergleichskette
{ n 2^{n-1}
}
{ =} { \sum_{k = 0}^n k \binom { n } { k }
}
{ } {
}
{ } {
}
{ } {
}
}
{}{}{.}
}
{} {}
<< | Kurs:Analysis (Osnabrück 2013-2015)/Teil I | >> |
---|