Kurs:Analysis (Osnabrück 2013-2015)/Teil I/Arbeitsblatt 3/latex

Aus Wikiversity
Zur Navigation springen Zur Suche springen

\setcounter{section}{3}






\zwischenueberschrift{Übungsaufgaben}




\inputaufgabe
{}
{

Zeige, und zwar allein unter Bezug auf Rechengesetze in $\Z$, dass die durch \aufzaehlungzwei {
\mathdisp {{ \frac{ a }{ c } } \cdot { \frac{ b }{ d } } \defeq { \frac{ ab }{ cd } }} { }
} {
\mathdisp {{ \frac{ a }{ c } } + { \frac{ b }{ d } } \defeq { \frac{ ad+bc }{ cd } }} { }
} definierte Addition und Multiplikation auf den rationalen Zahlen wohldefiniert ist, und dass die Assoziativität, die Kommutativität und das Distributivgesetz gelten.

}
{} {}




\inputaufgabe
{}
{

Es seien $x,y,z,w$ Elemente in einem Körper, wobei $z$ und $w$ nicht null seien. Beweise die folgenden Bruchrechenregeln.

\aufzaehlungacht{
\mavergleichskettedisp
{\vergleichskette
{ { \frac{ x }{ 1 } } }
{ =} { x }
{ } { }
{ } { }
{ } { }
} {}{}{,} }{
\mavergleichskettedisp
{\vergleichskette
{{ \frac{ 1 }{ z } } }
{ =} { z^{-1} }
{ } { }
{ } { }
{ } { }
} {}{}{,} }{
\mavergleichskettedisp
{\vergleichskette
{ { \frac{ 1 }{ -1 } } }
{ =} { -1 }
{ } { }
{ } { }
{ } { }
} {}{}{,} }{
\mavergleichskettedisp
{\vergleichskette
{ { \frac{ 0 }{ z } } }
{ =} {0 }
{ } { }
{ } { }
{ } { }
} {}{}{,} }{
\mavergleichskettedisp
{\vergleichskette
{ { \frac{ z }{ z } } }
{ =} { 1 }
{ } { }
{ } { }
{ } { }
} {}{}{,} }{
\mavergleichskettedisp
{\vergleichskette
{ { \frac{ x }{ z } } }
{ =} { { \frac{ xw }{ zw } } }
{ } { }
{ } { }
{ } { }
} {}{}{,} }{
\mavergleichskettedisp
{\vergleichskette
{ { \frac{ x }{ z } } \cdot { \frac{ y }{ w } } }
{ =} { { \frac{ xy }{ zw } } }
{ } { }
{ } { }
{ } { }
} {}{}{,} }{
\mavergleichskettedisp
{\vergleichskette
{ { \frac{ x }{ z } } + { \frac{ y }{ w } } }
{ =} { { \frac{ xw+yz }{ zw } } }
{ } { }
{ } { }
{ } { }
} {}{}{.} } Gilt die zu (8) analoge Formel, die entsteht, wenn man die Addition mit der Multiplikation vertauscht, also
\mavergleichskettedisp
{\vergleichskette
{ (x-z) \cdot (y-w) }
{ =} { (x+w)(y+z)-(z+w) }
{ } { }
{ } { }
{ } { }
} {}{}{?} Zeige, dass die \anfuehrung{beliebte Formel}{}
\mavergleichskettedisp
{\vergleichskette
{ { \frac{ x }{ z } } + { \frac{ y }{ w } } }
{ =} {{ \frac{ x+y }{ z+w } } }
{ } { }
{ } { }
{ } { }
} {}{}{} nicht gilt.

}
{} {}




\inputaufgabe
{}
{

Zeige, dass in einem \definitionsverweis {Körper}{}{} das \anfuehrung{umgekehrte Distributivgesetz}{,} also
\mavergleichskettedisp
{\vergleichskette
{ a+(bc) }
{ =} { (a+b) \cdot (a+c) }
{ } { }
{ } { }
{ } { }
} {}{}{,} nicht gilt.

}
{} {}




\inputaufgabe
{}
{

Beschreibe und beweise Regeln für die Addition und die Multiplikation von geraden und ungeraden ganzen Zahlen. Man definiere auf der zweielementigen Menge
\mathdisp {\{G,U\}} { }
eine \anfuehrung{Addition}{} und eine \anfuehrung{Multiplikation}{,} die diese Regeln \anfuehrung{repräsentieren}{.}

}
{} {}




\inputaufgabe
{}
{

Zeige, dass die einelementige Menge $\{0\}$ alle Körperaxiome erfüllt mit der einzigen Ausnahme, dass $0=1$ ist.

}
{} {}




\inputaufgabe
{}
{

Es sei $K$ ein \definitionsverweis {Körper}{}{.} Zeige, dass man jeder natürlichen Zahl
\mavergleichskette
{\vergleichskette
{n }
{ \in }{ \N }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} ein Körperelement $n_K$ zuordnen kann, so dass $0_K$ das Nullelement in $K$ und $1_K$ das Einselement in $K$ ist und so dass
\mavergleichskettedisp
{\vergleichskette
{ (n+1)_K }
{ =} { n_K+1_K }
{ } { }
{ } { }
{ } { }
} {}{}{} gilt. Zeige, dass diese Zuordnung die Eigenschaften
\mathdisp {(n+m)_K = n_K + m_K \text{ und } (nm)_K = n_K \cdot m_K} { }
besitzt.

Erweitere diese Zuordnung auf die ganzen Zahlen $\Z$ und zeige, dass die angeführten strukturellen Eigenschaften ebenfalls gelten.

}
{} {}




\inputaufgabe
{}
{

Skizziere den \definitionsverweis {Graphen}{}{} der reellen Addition \maabbeledisp {+} {\R \times \R} {\R } {(x,y)} {x+y } {,} und den Graphen der reellen Multiplikation \maabbeledisp {\cdot} {\R \times \R} {\R } {(x,y)} {x \cdot y } {.}

}
{} {}




\inputaufgabegibtloesung
{}
{

Zwei Personen, \mathkor {} {A} {und} {B} {,} liegen unter einer Palme, $A$ besitzt $2$ Fladenbrote und $B$ besitzt $3$ Fladenbrote. Eine dritte Person $C$ kommt hinzu, die kein Fladenbrot besitzt, aber $5$ Taler. Die drei Personen werden sich einig, für die $5$ Taler die Fladenbrote untereinander gleichmäßig aufzuteilen. Wie viele Taler gibt $C$ an $A$ und an $B$?

}
{} {}




\inputaufgabe
{}
{

Man gebe die Antworten als Bruch \zusatzklammer {bezogen auf das angegebene Vergleichsmaß} {} {:} Um wie viel ist eine Dreiviertelstunde länger als eine halbe Stunde, und um wie viel ist eine halbe Stunde kürzer als eine Dreiviertelstunde?

}
{} {}




\inputaufgabe
{}
{

Man erläutere die Uhrzeitangaben \anfuehrung{halb fünf}{,} \anfuehrung{viertel fünf}{,} \anfuehrung{drei viertel fünf}{.} Was würde \anfuehrung{ein sechstel fünf}{} und \anfuehrung{drei siebtel fünf}{} bedeuten?

}
{} {}




\inputaufgabegibtloesung
{}
{

Zeige, dass die \definitionsverweis {Binomialkoeffizienten}{}{} die rekursive Beziehung
\mavergleichskettedisp
{\vergleichskette
{ \binom { n+1 } { k} }
{ =} { \binom { n } { k} + \binom { n } { k-1} }
{ } { }
{ } { }
{ } { }
} {}{}{} erfüllen.

}
{} {}




\inputaufgabe
{}
{

Zeige, dass die \definitionsverweis {Binomialkoeffizienten}{}{} natürliche Zahlen sind.

}
{} {}




\inputaufgabe
{}
{

Beweise die Formel
\mavergleichskettedisp
{\vergleichskette
{ 2^n }
{ =} { \sum_{k = 0}^n \binom { n } { k} }
{ } { }
{ } { }
{ } { }
} {}{}{.}

}
{} {}




\inputaufgabegibtloesung
{}
{

Es sei $M$ eine $n$-elementige Menge. Zeige, dass die Anzahl der $k$-elementigen Teilmengen von $M$ gleich dem \definitionsverweis {Binomialkoeffizienten}{}{}
\mathdisp {\binom { n } { k}} { }
ist.

}
{} {}




\inputaufgabegibtloesung
{}
{

Beweise durch Induktion, dass für
\mavergleichskettedisp
{\vergleichskette
{n }
{ \geq} {10 }
{ } { }
{ } { }
{ } { }
} {}{}{} die Abschätzung
\mavergleichskettedisp
{\vergleichskette
{3^n }
{ \geq} { n^4 }
{ } { }
{ } { }
{ } { }
} {}{}{} gilt.

}
{} {}






\zwischenueberschrift{Aufgaben zum Abgeben}




\inputaufgabe
{2}
{

Zeige für einen \definitionsverweis {Körper}{}{} $K$ die folgenden Eigenschaften.

(1) Für jedes
\mathl{a \in K}{} ist die \definitionsverweis {Abbildung}{}{} \maabbeledisp {\alpha_a} {K} {K } {x} {x+a } {,} \definitionsverweis {bijektiv}{}{.}

(2) Für jedes
\mathbed {b \in K} {}
{b \neq 0} {}
{} {} {} {,} ist die Abbildung \maabbeledisp {\mu_b} {K} {K } {x} {bx } {,} bijektiv.

}
{} {}




\inputaufgabe
{5}
{

Beweise das allgemeine Distributivgesetz für einen \definitionsverweis {Körper}{}{.}

}
{} {}




\inputaufgabe
{3}
{

Zeige, dass die \anfuehrung{Rechenregel}{}
\mavergleichskettedisp
{\vergleichskette
{ { \frac{ a }{ b } } + { \frac{ c }{ d } } }
{ =} { { \frac{ a+c }{ b+d } } }
{ } { }
{ } { }
{ } { }
} {}{}{} bei
\mathl{a,c \in \N_+}{} \zusatzklammer {und
\mathl{b,d, b+d \in \Z \setminus \{0\}}{}} {} {} niemals gilt. Man gebe ein Beispiel mit
\mathl{a,b,c,d,b+d \neq 0}{,} wo diese Regel gilt.

}
{} {}




\inputaufgabe
{3}
{

Wir betrachten die Menge
\mavergleichskettedisp
{\vergleichskette
{K }
{ =} {\Q \times \Q }
{ =} {{ \left\{ (a,b) \mid a,b \in \Q \right\} } }
{ } { }
{ } { }
} {}{}{} mit den beiden ausgezeichneten Elementen
\mathdisp {0=(0,0) \text{ und } 1=(1,0)} { , }
der Addition
\mavergleichskettedisp
{\vergleichskette
{ (a,b)+(c,d) }
{ \defeq} {(a+c, b+d) }
{ } { }
{ } { }
{ } { }
} {}{}{} und der Multiplikation
\mavergleichskettedisp
{\vergleichskette
{ (a,b) \cdot (c,d) }
{ \defeq} {(ac-bd, ad+bc) }
{ } { }
{ } { }
{ } { }
} {}{}{.} Zeige, dass $K$ mit diesen Operationen ein \definitionsverweis {Körper}{}{} ist.

}
{} {}




\inputaufgabe
{3}
{

Beweise die Formel
\mavergleichskettedisp
{\vergleichskette
{ n 2^{n-1} }
{ =} { \sum_{k = 0}^n k \binom { n } { k} }
{ } { }
{ } { }
{ } { }
} {}{}{.}

}
{} {}


<< | Kurs:Analysis (Osnabrück 2013-2015)/Teil I | >>

PDF-Version dieses Arbeitsblattes

Zur Vorlesung (PDF)