Kurs:Einführung in die mathematische Logik (Osnabrück 2011-2012)/Arbeitsblatt 5/latex

Aus Wikiversity

\setcounter{section}{5}




\inputaufgabe
{}
{

Axiomatisiere den Körperbegriff in einer geeigneten Sprache erster Stufe.


Eine Menge $K$ heißt ein \definitionswort {Körper}{,} wenn es zwei \definitionsverweis {Verknüpfungen}{}{} \zusatzklammer {genannt Addition und Multiplikation} {} {}
\mathdisp {+: K \times K \longrightarrow K \text{ und } \cdot: K \times K \longrightarrow K} { }
und zwei verschiedene Elemente
\mavergleichskette
{\vergleichskette
{0,1 }
{ \in }{K }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} gibt, die die folgenden Eigenschaften erfüllen. \aufzaehlungdrei{Axiome der Addition \aufzaehlungvier{Assoziativgesetz: Für alle
\mavergleichskette
{\vergleichskette
{ a,b,c }
{ \in }{ K }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} gilt:
\mavergleichskette
{\vergleichskette
{ (a + b) + c }
{ = }{ a + (b + c) }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.} }{Kommutativgesetz: Für alle
\mavergleichskette
{\vergleichskette
{a,b }
{ \in }{ K }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} gilt
\mavergleichskette
{\vergleichskette
{a+b }
{ = }{b+a }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.} }{$0$ ist das neutrale Element der Addition, d.h. für alle
\mavergleichskette
{\vergleichskette
{a }
{ \in }{ K }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} ist
\mavergleichskette
{\vergleichskette
{a+0 }
{ = }{a }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.} }{Existenz des Negativen: Zu jedem
\mavergleichskette
{\vergleichskette
{a }
{ \in }{ K }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} gibt es ein Element
\mavergleichskette
{\vergleichskette
{b }
{ \in }{ K }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} mit
\mavergleichskette
{\vergleichskette
{a+b }
{ = }{ 0 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.} } }{Axiome der Multiplikation \aufzaehlungvier{Assoziativgesetz: Für alle
\mavergleichskette
{\vergleichskette
{ a,b,c }
{ \in }{ K }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} gilt:
\mavergleichskette
{\vergleichskette
{ (a \cdot b) \cdot c }
{ = }{ a \cdot (b \cdot c) }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.} }{Kommutativgesetz: Für alle
\mavergleichskette
{\vergleichskette
{ a,b }
{ \in }{ K }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} gilt
\mavergleichskette
{\vergleichskette
{ a \cdot b }
{ = }{b \cdot a }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.} }{$1$ ist das neutrale Element der Multiplikation, d.h. für alle
\mavergleichskette
{\vergleichskette
{ a }
{ \in }{ K }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} ist
\mavergleichskette
{\vergleichskette
{ a \cdot 1 }
{ = }{ a }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.} }{Existenz des Inversen: Zu jedem
\mavergleichskette
{\vergleichskette
{ a }
{ \in }{ K }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} mit
\mavergleichskette
{\vergleichskette
{a }
{ \neq }{0 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} gibt es ein Element
\mavergleichskette
{\vergleichskette
{ c }
{ \in }{ K }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} mit
\mavergleichskette
{\vergleichskette
{a \cdot c }
{ = }{1 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.} } }{Distributivgesetz: Für alle
\mavergleichskette
{\vergleichskette
{ a,b,c }
{ \in }{ K }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} gilt
\mavergleichskette
{\vergleichskette
{a \cdot (b+c) }
{ = }{ (a \cdot b) + (a \cdot c) }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.} }

}
{} {}




\inputaufgabe
{}
{

Axiomatisiere den Begriff eines angeordneten Körpers in einer geeigneten Sprache erster Stufe.


Ein \definitionsverweis {Körper}{}{} $K$ heißt \definitionswort {angeordnet}{,} wenn es eine \definitionsverweis {totale Ordnung}{}{} $\geq$ auf $K$ gibt, die die beiden Eigenschaften \aufzaehlungzwei {Aus
\mavergleichskette
{\vergleichskette
{ a }
{ \geq }{ b }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} folgt
\mavergleichskette
{\vergleichskette
{ a + c }
{ \geq }{ b + c }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} \zusatzklammer {für beliebige
\mavergleichskettek
{\vergleichskettek
{ a , b , c }
{ \in }{ K }
{ }{ }
{ }{ }
{ }{ }
} {}{}{}} {} {,} } {Aus
\mavergleichskette
{\vergleichskette
{ a }
{ \geq }{ 0 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} und
\mavergleichskette
{\vergleichskette
{ b }
{ \geq }{ 0 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} folgt
\mavergleichskette
{\vergleichskette
{ a b }
{ \geq }{ 0 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} \zusatzklammer {für beliebige
\mavergleichskettek
{\vergleichskettek
{ a, b }
{ \in }{ K }
{ }{ }
{ }{ }
{ }{ }
} {}{}{}} {} {,} } erfüllt.

}
{} {}




\inputaufgabe
{}
{

Zeige, dass die folgenden \definitionsverweis {prädikatenlogischen Ausdrücke}{}{} \definitionsverweis {allgemeingültig}{}{} sind. \aufzaehlungdrei{
\mathdisp {\forall x \forall y \forall z ((x=y \wedge y=z) \rightarrow x=z)} { . }
}{
\mathdisp {(\forall x \alpha) \rightarrow \alpha} { }
(wobei $\alpha$ ein Ausdruck ist). }{
\mathdisp {\alpha_1 \wedge \alpha_2 \wedge \alpha_3 \rightarrow \beta} { , }
wobei
\mathl{\alpha_1,\alpha_2,\alpha_3}{} die Gruppenaxiome sind und
\mathdisp {\beta \defeq \forall z ( \forall x ( zx=x \wedge xz =x) \rightarrow z =e )} { }
ist. }

}
{} {}




\inputaufgabe
{}
{

Es sei $\Gamma$ eine Ausdrucksmenge und $\alpha$ ein Ausdruck in einer Sprache erster Stufe. Zeige, dass
\mathl{\Gamma \vDash \alpha}{} genau dann gilt, wenn
\mathl{\Gamma \cup \{ \neg \alpha\}}{} nicht \definitionsverweis {erfüllbar}{}{} ist.

}
{} {}


<< | Kurs:Einführung in die mathematische Logik (Osnabrück 2011-2012) | >>

PDF-Version dieses Arbeitsblattes

Zur Vorlesung (PDF)