Kurs:Elementare Algebra/4/Klausur/latex
%Daten zur Institution
%\input{Dozentdaten}
%\renewcommand{\fachbereich}{Fachbereich}
%\renewcommand{\dozent}{Prof. Dr. . }
%Klausurdaten
\renewcommand{\klausurgebiet}{ }
\renewcommand{\klausurtyp}{ }
\renewcommand{\klausurdatum}{ . 20}
\klausurvorspann {\fachbereich} {\klausurdatum} {\dozent} {\klausurgebiet} {\klausurtyp}
%Daten für folgende Punktetabelle
\renewcommand{\aeins}{ 3 }
\renewcommand{\azwei}{ 3 }
\renewcommand{\adrei}{ 1 }
\renewcommand{\avier}{ 2 }
\renewcommand{\afuenf}{ 5 }
\renewcommand{\asechs}{ 3 }
\renewcommand{\asieben}{ 4 }
\renewcommand{\aacht}{ 3 }
\renewcommand{\aneun}{ 4 }
\renewcommand{\azehn}{ 12 }
\renewcommand{\aelf}{ 4 }
\renewcommand{\azwoelf}{ 4 }
\renewcommand{\adreizehn}{ 8 }
\renewcommand{\avierzehn}{ 4 }
\renewcommand{\afuenfzehn}{ 2 }
\renewcommand{\asechzehn}{ 62 }
\renewcommand{\asiebzehn}{ }
\renewcommand{\aachtzehn}{ }
\renewcommand{\aneunzehn}{ }
\renewcommand{\azwanzig}{ }
\renewcommand{\aeinundzwanzig}{ }
\renewcommand{\azweiundzwanzig}{ }
\renewcommand{\adreiundzwanzig}{ }
\renewcommand{\avierundzwanzig}{ }
\renewcommand{\afuenfundzwanzig}{ }
\renewcommand{\asechsundzwanzig}{ }
\punktetabellefuenfzehn
\klausurnote
\newpage
\setcounter{section}{0}
\inputaufgabegibtloesung
{3}
{
Definiere die folgenden
\zusatzklammer {kursiv gedruckten} {} {} Begriffe.
\aufzaehlungsechs{Die
\stichwort {Ordnung} {}
eines Elements
\mathl{g \in G}{} in einer Gruppe $G$.
}{Ein \stichwort {Nichtnullteiler} {} $a$ in einem \definitionsverweis {kommutativen Ring}{}{} $R$.
}{Ein \stichwort {Körper} {} $K$.
}{Die
\stichwort {eulersche Funktion} {}
\mathl{\varphi(n)}{} zu
\mathl{n \in \N}{.}
}{Der
\stichwort {Zerfällungskörper} {}
zu einem Polynom
\mathl{F \in K[X]}{} über einem Körper $K$.
}{Eine
\stichwort {konstruierbare} {}
Zahl
\mathl{z \in {\mathbb C}}{.}
}
}
{} {}
\inputaufgabegibtloesung
{3}
{
Formuliere die folgenden Sätze.
\aufzaehlungdrei{Der
\stichwort {Fundamentalsatz der Algebra} {.}}{Der Satz über die Faktorzerlegung im Quotientenkörper
\mathl{K=Q(R)}{} zu einem faktoriellen Bereich $R$.}{Der Satz über die Winkeldreiteilung.}
}
{} {}
\inputaufgabegibtloesung
{1}
{
Es sei $G$ eine \definitionsverweis {Gruppe}{}{.} Zeige, dass
\mavergleichskettedisp
{\vergleichskette
{ { \left( x^{-1} \right) }^{-1}
}
{ =} {x
}
{ } {
}
{ } {
}
{ } {
}
}
{}{}{}
für alle
\mavergleichskette
{\vergleichskette
{ x
}
{ \in }{ G
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}
ist.
}
{} {}
\inputaufgabegibtloesung
{2}
{
Finde zwei natürliche Zahlen, deren Summe
\mathl{65}{} und deren Produkt $1000$ ist.
}
{} {}
\inputaufgabegibtloesung
{5}
{
Es sei $K$ ein
\definitionsverweis {Körper}{}{}
und
\mathl{K[X]}{} der Polynomring über $K$. Zeige unter Verwendung der Division mit Rest, dass $K[X]$ ein
\definitionsverweis {Hauptidealbereich}{}{}
ist.
}
{} {}
\inputaufgabegibtloesung
{3}
{
Man gebe zu jedem
\mathl{n \geq 2}{} einen
\definitionsverweis {kommutativen Ring}{}{}
$R$ und ein Element
\mathbed {x \in R} {}
{x \neq 0} {}
{} {} {} {,}
an, für das
\mathkor {} {nx=0} {und} {x^n =0} {}
gilt.
}
{} {}
\inputaufgabegibtloesung
{4 (2+2)}
{
Wir betrachten die endliche Permutationsgruppe $S_n$ zu einer Menge mit $n$ Elementen.
a) Zeige, dass es in $S_n$ Elemente der \definitionsverweis {Ordnung}{}{} $n$ gibt.
b) Man gebe ein Beispiel für eine Permutationsgruppe $S_n$ und einem Element darin, dessen Ordnung größer als $n$ ist.
}
{} {}
\inputaufgabegibtloesung
{3}
{
Es sei $R$ ein
\definitionsverweis {kommutativer Ring}{}{}
und
\mathl{h \in R}{.} Zeige, dass die Abbildung
\maabbeledisp {} {R} {R
} {f} {hf
} {,}
ein
\definitionsverweis {Gruppenhomomorphismus}{}{}
ist. Beschreibe das
\definitionsverweis {Bild}{}{}
und den
\definitionsverweis {Kern}{}{}
dieser Abbildung.
}
{} {}
\inputaufgabegibtloesung
{4 (1+3)}
{
a) Finde die Zahlen
\mathl{z \in \{0,1 , \ldots , 9 \}}{} mit der Eigenschaft, dass die letzte Ziffer ihres Quadrates
\zusatzklammer {in der Dezimaldarstellung} {} {}
gleich $z$ ist.
b) Finde die Zahlen
\mathl{z \in \{0,1 , \ldots , 99 \}}{} mit der Eigenschaft, dass die beiden letzten Ziffern ihres Quadrates
\zusatzklammer {in der Dezimaldarstellung} {} {}
gleich $z$ ist.
}
{} {}
\inputaufgabegibtloesung
{12 (3+5+3+1)}
{
Es seien
\mathl{R_1, R_2 , \ldots , R_n}{}
\definitionsverweis {kommutative Ringe}{}{}
und sei
\mavergleichskettedisp
{\vergleichskette
{R
}
{ =} { R_1 \times R_2 \times \cdots \times R_n
}
{ } {
}
{ } {
}
{ } {
}
}
{}{}{}
der
\definitionsverweis {Produktring}{}{.}
\aufzaehlungvier{Es seien
\mathdisp {I_1 \subseteq R_1, I_2 \subseteq R_2 , \ldots , I_n \subseteq R_n} { }
\definitionsverweis {Ideale}{}{.}
Zeige, dass die Produktmenge
\mathdisp {I_1 \times I_2 \times \cdots \times I_n} { }
ein Ideal in $R$ ist.
}{Zeige, dass jedes Ideal
\mathl{I \subseteq R}{} die Form
\mavergleichskettedisp
{\vergleichskette
{I
}
{ =} {
I_1 \times I_2 \times \cdots \times I_n
}
{ } {
}
{ } {
}
{ } {
}
}
{}{}{}
mit Idealen
\mathl{I_j \subseteq R_j}{} besitzt.
}{Sei
\mavergleichskettedisp
{\vergleichskette
{I
}
{ =} {
I_1 \times I_2 \times \cdots \times I_n
}
{ } {
}
{ } {
}
{ } {
}
}
{}{}{}
ein Ideal in $R$. Zeige, dass $I$ genau dann ein Hauptideal ist, wenn sämtliche $I_j$ Hauptideale sind.
}{Zeige, dass $R$ genau dann ein
\definitionsverweis {Hauptidealring}{}{}
ist, wenn alle $R_j$ Hauptidealringe sind.
}
}
{} {}
\inputaufgabegibtloesung
{4 (1+3)}
{
a) Zeige, dass
\mathl{X^3+X^2+2}{}
\definitionsverweis {irreduzibel}{}{}
in $\Z/(3) [X]$ ist.
b) Bestimme die
\definitionsverweis {Partialbruchzerlegung}{}{}
von
\mathdisp {{ \frac{ X^4 }{ { \left( X^3+X^2+2 \right) }^2 } }} { }
in
\mathl{\Z/(3) (X)}{.}
}
{} {}
\inputaufgabegibtloesung
{4}
{
Bestimme in $\Q[ { \mathrm i} ]$ das multiplikative Inverse von
\mathdisp {\frac{3}{7} + \frac{2}{5} { \mathrm i}} { . }
Die Antwort muss in der Form $p+q { \mathrm i}$ mit $p,q \in \Q$ in gekürzter Form sein.
}
{} {}
\inputaufgabegibtloesung
{8 (3+5)}
{
Es seien
\mathl{p,q \in \Q_{\geq 0}}{} und sei
\mavergleichskettedisp
{\vergleichskette
{f
}
{ =} { \sqrt{p} + \sqrt{q}
}
{ } {
}
{ } {
}
{ } {
}
}
{}{}{.}
a) Zeige, dass es ein Polynom
\mathl{G \in \Q[X]}{} der Form
\mavergleichskettedisp
{\vergleichskette
{G
}
{ =} { X^4 + c X^2 + d
}
{ } {
}
{ } {
}
{ } {
}
}
{}{}{}
mit
\mathl{G(f)=0}{} gibt.
b) Es seien nun zusätzlich \mathkor {} {p} {und} {q} {} verschiedene Primzahlen. Zeige, dass das Polynom $G$ aus Teil a) das Minimalpolynom zu $f$ ist.
}
{} {}
\inputaufgabegibtloesung
{4}
{
Zeige, dass zu zwei konstruierbaren positiven reellen Zahlen
\mathkor {} {a} {und} {b} {}
die Potenz
\mathl{a^b}{} nicht konstruierbar sein muss.
}
{} {}
\inputaufgabegibtloesung
{2}
{
Zeige, dass jede \definitionsverweis {komplexe Einheitswurzel}{}{} auf dem Einheitskreis liegt.
}
{} {}