Kurs:Elementare Algebra/4/Klausur

Aus Wikiversity


Aufgabe 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Punkte 4 4 1 2 5 3 4 3 4 12 4 4 8 4 2 64



Aufgabe * (4 Punkte)

Definiere die folgenden (kursiv gedruckten) Begriffe.

  1. Ein Monoid .
  2. Die Ordnung eines Elements in einer Gruppe .
  3. Ein Nichtnullteiler in einem kommutativen Ring .
  4. Ein Körper .
  5. Ein Ideal in einem kommutativen Ring .
  6. Die eulersche Funktion zu .
  7. Der Zerfällungskörper zu einem Polynom über einem Körper .
  8. Eine konstruierbare Zahl .


Aufgabe * (4 Punkte)

Formuliere die folgenden Sätze.

  1. Die rekursive Beziehung zwischen den Binomialkoeffizienten (Pascalsches Dreieck).
  2. Der Fundamentalsatz der Algebra.
  3. Der Satz über die Faktorzerlegung im Quotientenkörper zu einem faktoriellen Bereich .
  4. Der Satz über die Winkeldreiteilung.


Aufgabe * (1 Punkt)

Es sei eine Gruppe. Zeige, dass

für alle ist.


Aufgabe * (2 Punkte)

Finde zwei natürliche Zahlen, deren Summe und deren Produkt ist.


Aufgabe * (5 Punkte)

Es sei ein Körper und der Polynomring über . Zeige unter Verwendung der Division mit Rest, dass ein Hauptidealbereich ist.


Aufgabe * (3 Punkte)

Man gebe zu jedem einen kommutativen Ring und ein Element , , an, für das und gilt.


Aufgabe * (4 (2+2) Punkte)

Wir betrachten die endliche Permutationsgruppe zu einer Menge mit Elementen.

a) Zeige, dass es in Elemente der Ordnung gibt.

b) Man gebe ein Beispiel für eine Permutationsgruppe und einem Element darin, dessen Ordnung größer als ist.


Aufgabe * (3 Punkte)

Es sei ein kommutativer Ring und . Zeige, dass die Abbildung

ein Gruppenhomomorphismus ist. Beschreibe das Bild und den Kern dieser Abbildung.


Aufgabe * (4 (1+3) Punkte)

a) Finde die Zahlen mit der Eigenschaft, dass die letzte Ziffer ihres Quadrates (in der Dezimaldarstellung) gleich ist.

b) Finde die Zahlen mit der Eigenschaft, dass die beiden letzten Ziffern ihres Quadrates (in der Dezimaldarstellung) gleich ist.


Aufgabe * (12 (3+5+3+1) Punkte)

Es seien kommutative Ringe und sei

der Produktring.

  1. Es seien

    Ideale. Zeige, dass die Produktmenge

    ein Ideal in ist.

  2. Zeige, dass jedes Ideal die Form

    mit Idealen besitzt.

  3. Sei

    ein Ideal in . Zeige, dass genau dann ein Hauptideal ist, wenn sämtliche Hauptideale sind.

  4. Zeige, dass genau dann ein Hauptidealring ist, wenn alle Hauptidealringe sind.


Aufgabe * (4 (1+3) Punkte)

a) Zeige, dass irreduzibel in ist.

b) Bestimme die Partialbruchzerlegung von

in .


Aufgabe * (4 Punkte)

Bestimme in das multiplikative Inverse von

Die Antwort muss in der Form mit in gekürzter Form sein.


Aufgabe * (8 (3+5) Punkte)

Es seien und sei

a) Zeige, dass es ein Polynom der Form

mit gibt.

b) Es seien nun zusätzlich und verschiedene Primzahlen. Zeige, dass das Polynom aus Teil a) das Minimalpolynom zu ist.


Aufgabe * (4 Punkte)

Zeige, dass zu zwei konstruierbaren positiven reellen Zahlen und die Potenz nicht konstruierbar sein muss.


Aufgabe * (2 Punkte)

Zeige, dass jede komplexe Einheitswurzel auf dem Einheitskreis liegt.