Kurs:Grundkurs Mathematik/Teil I/9/Klausur/latex

Aus Wikiversity
Zur Navigation springen Zur Suche springen

%Daten zur Institution

%\input{Dozentdaten}

%\renewcommand{\fachbereich}{Fachbereich}

%\renewcommand{\dozent}{Prof. Dr. . }

%Klausurdaten

\renewcommand{\klausurgebiet}{ }

\renewcommand{\klausurtyp}{ }

\renewcommand{\klausurdatum}{ . 20}

\klausurvorspann {\fachbereich} {\klausurdatum} {\dozent} {\klausurgebiet} {\klausurtyp}


%Daten für folgende Punktetabelle


\renewcommand{\aeins}{ 3 }

\renewcommand{\azwei}{ 3 }

\renewcommand{\adrei}{ 3 }

\renewcommand{\avier}{ 1 }

\renewcommand{\afuenf}{ 3 }

\renewcommand{\asechs}{ 2 }

\renewcommand{\asieben}{ 2 }

\renewcommand{\aacht}{ 3 }

\renewcommand{\aneun}{ 2 }

\renewcommand{\azehn}{ 5 }

\renewcommand{\aelf}{ 2 }

\renewcommand{\azwoelf}{ 0 }

\renewcommand{\adreizehn}{ 4 }

\renewcommand{\avierzehn}{ 4 }

\renewcommand{\afuenfzehn}{ 2 }

\renewcommand{\asechzehn}{ 5 }

\renewcommand{\asiebzehn}{ 2 }

\renewcommand{\aachtzehn}{ 4 }

\renewcommand{\aneunzehn}{ 3 }

\renewcommand{\azwanzig}{ 3 }

\renewcommand{\aeinundzwanzig}{ 56 }

\renewcommand{\azweiundzwanzig}{ }

\renewcommand{\adreiundzwanzig}{ }

\renewcommand{\avierundzwanzig}{ }

\renewcommand{\afuenfundzwanzig}{ }

\renewcommand{\asechsundzwanzig}{ }

\punktetabellezwanzig


\klausurnote

\newpage


\setcounter{section}{0}




\inputaufgabegibtloesung
{3}
{

Definiere die folgenden \zusatzklammer {kursiv gedruckten} {} {} Begriffe. \aufzaehlungsechs{Die \stichwort {Kontraposition} {} zu einer Implikation
\mathl{\alpha \rightarrow \beta}{.}

}{Die \stichwort {Potenzmenge} {} zu einer Menge $M$.

}{Eine \stichwort {injektive} {} Abbildung \maabbdisp {f} {L} {M } {.}

}{Die $n$-te \stichwort {Potenz} {} zu einer natürlichen Zahl $a$.

}{Die \stichwort {Größergleichrelation} {} auf den ganzen Zahlen.

}{Eine \stichwort {rationale Zahl} {.} }

}
{} {}




\inputaufgabegibtloesung
{3}
{

Formuliere die folgenden Sätze. \aufzaehlungdrei{Der Satz über die Eindeutigkeit der Addition auf einem Peano-Modell.}{Der Satz über die Verträglichkeit der Größergleichrelation $\geq$ auf $\N$ mit der Addition und mit der Multiplikation.}{Das \stichwort {Lemma von Euklid} {.}}

}
{} {}




\inputaufgabegibtloesung
{3}
{

Zeige, dass der aussagenlogische Ausdruck
\mathdisp {{ \left( r \rightarrow { \left( p \wedge \neg q \right) } \right) } \rightarrow { \left( \neg p \rightarrow { \left( \neg r \vee q \right) } \right) }} { }
\definitionsverweis {allgemeingültig}{}{} ist

}
{} {}




\inputaufgabegibtloesung
{1}
{

Wir betrachten den Satz \anfuehrung{Lucy Sonnenschein tanzt auf allen Hochzeiten}{.} Negiere diesen Satz durch eine Existenzaussage.

}
{} {}




\inputaufgabegibtloesung
{3}
{

Erläutere das Prinzip \stichwort {Beweis durch Widerspruch} {} für eine Aussage der Form \anfuehrung{Aus $A$ folgt $B$}{.}

}
{} {}




\inputaufgabegibtloesung
{2 (1+1)}
{

Wir betrachten auf der Menge
\mavergleichskettedisp
{\vergleichskette
{M }
{ =} { \{a,b,c,d \} }
{ } { }
{ } { }
{ } { }
} {}{}{} die durch die Tabelle %Daten für folgende Tabelle


\renewcommand{\leitzeilenull}{ $\star$ }

\renewcommand{\leitzeileeins}{ $a$ }

\renewcommand{\leitzeilezwei}{ $b$ }

\renewcommand{\leitzeiledrei}{ $c$ }

\renewcommand{\leitzeilevier}{ $d$ }

\renewcommand{\leitzeilefuenf}{ }

\renewcommand{\leitzeilesechs}{ }

\renewcommand{\leitzeilesieben}{ }

\renewcommand{\leitzeileacht}{ }

\renewcommand{\leitzeileneun}{ }

\renewcommand{\leitzeilezehn}{ }

\renewcommand{\leitzeileelf}{ }

\renewcommand{\leitzeilezwoelf}{ }


\renewcommand{\leitspaltenull}{ }

\renewcommand{\leitspalteeins}{ $a$ }

\renewcommand{\leitspaltezwei}{ $b$ }

\renewcommand{\leitspaltedrei}{ $c$ }

\renewcommand{\leitspaltevier}{ $d$ }

\renewcommand{\leitspaltefuenf}{ }

\renewcommand{\leitspaltesechs}{ }

\renewcommand{\leitspaltesieben}{ }

\renewcommand{\leitspalteacht}{ }

\renewcommand{\leitspalteneun}{ }

\renewcommand{\leitspaltezehn}{ }

\renewcommand{\leitspalteelf}{ }

\renewcommand{\leitspaltezwoelf}{ }

\renewcommand{\leitspaltedreizehn}{ }

\renewcommand{\leitspaltevierzehn}{ }

\renewcommand{\leitspaltefuenfzehn}{ }

\renewcommand{\leitspaltesechzehn}{ }

\renewcommand{\leitspaltesiebzehn}{ }

\renewcommand{\leitspalteachtzehn}{ }

\renewcommand{\leitspalteneunzehn}{ }

\renewcommand{\leitspaltezwanzig}{ }



\renewcommand{\aeinsxeins}{ c }

\renewcommand{\aeinsxzwei}{ a }

\renewcommand{\aeinsxdrei}{ a }

\renewcommand{\aeinsxvier}{ a }

\renewcommand{\aeinsxfuenf}{ }

\renewcommand{\aeinsxsechs}{ }

\renewcommand{\aeinsxsieben}{ }

\renewcommand{\aeinsxacht}{ }

\renewcommand{\aeinsxneun}{ }

\renewcommand{\aeinsxzehn}{ }

\renewcommand{\aeinsxelf}{ }

\renewcommand{\aeinsxzwoelf}{ }



\renewcommand{\azweixeins}{ d }

\renewcommand{\azweixzwei}{ d }

\renewcommand{\azweixdrei}{ b }

\renewcommand{\azweixvier}{ b }

\renewcommand{\azweixfuenf}{ }

\renewcommand{\azweixsechs}{ }

\renewcommand{\azweixsieben}{ }

\renewcommand{\azweixacht}{ }

\renewcommand{\azweixneun}{ }

\renewcommand{\azweixzehn}{ }

\renewcommand{\azweixelf}{ }

\renewcommand{\azweixzwoelf}{ }



\renewcommand{\adreixeins}{ a }

\renewcommand{\adreixzwei}{ b }

\renewcommand{\adreixdrei}{ c }

\renewcommand{\adreixvier}{ c }

\renewcommand{\adreixfuenf}{ }

\renewcommand{\adreixsechs}{ }

\renewcommand{\adreixsieben}{ }

\renewcommand{\adreixacht}{ }

\renewcommand{\adreixneun}{ }

\renewcommand{\adreixzehn}{ }

\renewcommand{\adreixelf}{ }

\renewcommand{\adreixzwoelf}{ }



\renewcommand{\avierxeins}{ b }

\renewcommand{\avierxzwei}{ a }

\renewcommand{\avierxdrei}{ d }

\renewcommand{\avierxvier}{ d }

\renewcommand{\avierxfuenf}{ }

\renewcommand{\avierxsechs}{ }

\renewcommand{\avierxsieben}{ }

\renewcommand{\avierxacht}{ }

\renewcommand{\avierxneun}{ }

\renewcommand{\avierxzehn}{ }

\renewcommand{\avierxelf}{ }

\renewcommand{\avierxzwoelf}{ }


\renewcommand{\afuenfxeins}{ }

\renewcommand{\afuenfxzwei}{ }

\renewcommand{\afuenfxdrei}{ }

\renewcommand{\afuenfxvier}{ }

\renewcommand{\afuenfxfuenf}{ }

\renewcommand{\afuenfxsechs}{ }

\renewcommand{\afuenfxsieben}{ }

\renewcommand{\afuenfxacht}{ }

\renewcommand{\afuenfxneun}{ }

\renewcommand{\afuenfxzehn}{ }

\renewcommand{\afuenfxelf}{ }

\renewcommand{\afuenfxzwoelf}{ }


\renewcommand{\asechsxeins}{ }

\renewcommand{\asechsxzwei}{ }

\renewcommand{\asechsxdrei}{ }

\renewcommand{\asechsxvier}{ }

\renewcommand{\asechsxfuenf}{ }

\renewcommand{\asechsxsechs}{ }

\renewcommand{\asechsxsieben}{ }

\renewcommand{\asechsxacht}{ }

\renewcommand{\asechsxneun}{ }

\renewcommand{\asechsxzehn}{ }

\renewcommand{\asechsxelf}{ }

\renewcommand{\asechsxzwoelf}{ }


\renewcommand{\asiebenxeins}{ }

\renewcommand{\asiebenxzwei}{ }

\renewcommand{\asiebenxdrei}{ }

\renewcommand{\asiebenxvier}{ }

\renewcommand{\asiebenxfuenf}{ }

\renewcommand{\asiebenxsechs}{ }

\renewcommand{\asiebenxsieben}{ }

\renewcommand{\asiebenxacht}{ }

\renewcommand{\asiebenxneun}{ }

\renewcommand{\asiebenxzehn}{ }

\renewcommand{\asiebenxelf}{ }

\renewcommand{\asiebenxzwoelf}{ }


\renewcommand{\aachtxeins}{ }

\renewcommand{\aachtxzwei}{ }

\renewcommand{\aachtxdrei}{ }

\renewcommand{\aachtxvier}{ }

\renewcommand{\aachtxfuenf}{ }

\renewcommand{\aachtxsechs}{ }

\renewcommand{\aachtxsieben}{ }

\renewcommand{\aachtxacht}{ }

\renewcommand{\aachtxneun}{ }

\renewcommand{\aachtxzehn}{ }

\renewcommand{\aachtxelf}{ }

\renewcommand{\aachtxzwoelf}{ }


\renewcommand{\aneunxeins}{ }

\renewcommand{\aneunxzwei}{ }

\renewcommand{\aneunxdrei}{ }

\renewcommand{\aneunxvier}{ }

\renewcommand{\aneunxfuenf}{ }

\renewcommand{\aneunxsechs}{ }

\renewcommand{\aneunxsieben}{ }

\renewcommand{\aneunxacht}{ }

\renewcommand{\aneunxneun}{ }

\renewcommand{\aneunxzehn}{ }

\renewcommand{\aneunxelf}{ }

\renewcommand{\aneunxzwoelf}{ }


\renewcommand{\azehnxeins}{ }

\renewcommand{\azehnxzwei}{ }

\renewcommand{\azehnxdrei}{ }

\renewcommand{\azehnxvier}{ }

\renewcommand{\azehnxfuenf}{ }

\renewcommand{\azehnxsechs}{ }

\renewcommand{\azehnxsieben}{ }

\renewcommand{\azehnxacht}{ }

\renewcommand{\azehnxneun}{ }

\renewcommand{\azehnxzehn}{ }

\renewcommand{\azehnxelf}{ }

\renewcommand{\azehnxzwoelf}{ }



\renewcommand{\aelfxeins}{ }

\renewcommand{\aelfxzwei}{ }

\renewcommand{\aelfxdrei}{ }

\renewcommand{\aelfxvier}{ }

\renewcommand{\aelfxfuenf}{ }

\renewcommand{\aelfxsechs}{ }

\renewcommand{\aelfxsieben}{ }

\renewcommand{\aelfxacht}{ }

\renewcommand{\aelfxneun}{ }

\renewcommand{\aelfxzehn}{ }

\renewcommand{\aelfxelf}{ }

\renewcommand{\aelfxzwoelf}{ }



\renewcommand{\azwoelfxeins}{ }

\renewcommand{\azwoelfxzwei}{ }

\renewcommand{\azwoelfxdrei}{ }

\renewcommand{\azwoelfxvier}{ }

\renewcommand{\azwoelfxfuenf}{ }

\renewcommand{\azwoelfxsechs}{ }

\renewcommand{\azwoelfxsieben}{ }

\renewcommand{\azwoelfxacht}{ }

\renewcommand{\azwoelfxneun}{ }

\renewcommand{\azwoelfxzehn}{ }

\renewcommand{\azwoelfxelf}{ }

\renewcommand{\azwoelfxzwoelf}{ }



\renewcommand{\adreizehnxeins}{ }

\renewcommand{\adreizehnxzwei}{ }

\renewcommand{\adreizehnxdrei}{ }

\renewcommand{\adreizehnxvier}{ }

\renewcommand{\adreizehnxfuenf}{ }

\renewcommand{\adreizehnxsechs}{ }

\renewcommand{\adreizehnxsieben}{ }

\renewcommand{\adreizehnxacht}{ }

\renewcommand{\adreizehnxneun}{ }

\renewcommand{\adreizehnxzehn}{ }

\renewcommand{\adreizehnxelf}{ }

\renewcommand{\adreizehnxzwoelf}{ }



\renewcommand{\avierzehnxeins}{ }

\renewcommand{\avierzehnxzwei}{ }

\renewcommand{\avierzehnxdrei}{ }

\renewcommand{\avierzehnxvier}{ }

\renewcommand{\avierzehnxfuenf}{ }

\renewcommand{\avierzehnxsechs}{ }

\renewcommand{\avierzehnxsieben}{ }

\renewcommand{\avierzehnxacht}{ }

\renewcommand{\avierzehnxneun}{ }

\renewcommand{\avierzehnxzehn}{ }

\renewcommand{\avierzehnxelf}{ }

\renewcommand{\avierzehnxzwoelf}{ }


\renewcommand{\afuenfzehnxeins}{ }

\renewcommand{\afuenfzehnxzwei}{ }

\renewcommand{\afuenfzehnxdrei}{ }

\renewcommand{\afuenfzehnxvier}{ }

\renewcommand{\afuenfzehnxfuenf}{ }

\renewcommand{\afuenfzehnxsechs}{ }

\renewcommand{\afuenfzehnxsieben}{ }

\renewcommand{\afuenfzehnxacht}{ }

\renewcommand{\afuenfzehnxneun}{ }

\renewcommand{\afuenfzehnxzehn}{ }

\renewcommand{\afuenfzehnxelf}{ }

\renewcommand{\afuenfzehnxzwoelf}{ }


\renewcommand{\asechzehnxeins}{ }

\renewcommand{\asechzehnxzwei}{ }

\renewcommand{\asechzehnxdrei}{ }

\renewcommand{\asechzehnxvier}{ }

\renewcommand{\asechzehnxfuenf}{ }

\renewcommand{\asechzehnxsechs}{ }

\renewcommand{\asechzehnxsieben}{ }

\renewcommand{\asechzehnxacht}{ }

\renewcommand{\asechzehnxneun}{ }

\renewcommand{\asechzehnxzehn}{ }

\renewcommand{\asechzehnxelf}{ }

\renewcommand{\asechzehnxzwoelf}{ }


\tabelleleitvierxvier

gegebene Verknüpfung $\star$. \aufzaehlungzwei {Berechne
\mathdisp {b \star ( c \star (d \star a))} { . }
} {Besitzt die Verknüpfung $\star$ ein neutrales Element? }

}
{} {}




\inputaufgabegibtloesung
{2}
{

Es seien
\mathl{L,M,N}{} Mengen und \maabb {F} {L} {M } {} und \maabb {G} {M} {N } {} \definitionsverweis {surjektive Abbildungen}{}{.} Zeige, dass die \definitionsverweis {Hintereinanderschaltung}{}{}
\mathl{G \circ F}{} ebenfalls surjektiv ist.

}
{} {}




\inputaufgabegibtloesung
{3}
{

Beweise durch Induktion, dass die Summe von aufeinanderfolgenden ungeraden Zahlen \zusatzklammer {beginnend bei $1$} {} {} stets eine Quadratzahl ist.

}
{} {}




\inputaufgabegibtloesung
{2}
{

Finde die kleinste natürliche Zahl
\mavergleichskette
{\vergleichskette
{n }
{ \geq }{2 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{,} die sowohl eine Quadratzahl als auch eine Kubikzahl ist.

}
{} {}




\inputaufgabegibtloesung
{5 (1+4)}
{

Ein Cocktailmixer verfügt über zwei Verarbeitungstechniken, nämlich schüt\-teln und rühren, wobei in jedem Arbeitsgang stets zwei Grundzutaten bzw. Zwischenprodukte miteinander verarbeitet werden. Bei jedem Cocktail wird jede Grundzutat bei genau einem Arbeitsvorgang verarbeitet \zusatzklammer {wobei die dabei entstehenden Zwischenprodukte weiterverarbeitet werden können} {} {.} Als Grundzutaten stehen Orangensaft, Zitronensaft, Pfefferminzblätter und Rum zur Verfügung. \aufzaehlungzwei {Beschreibe die Zubereitung eines Cocktails, so dass jede Verarbeitungstechnik mindestens einmal vorkommt. } {Auf wie viele Arten kann er aus den Zutaten einen Cocktail mixen? }

}
{} {}




\inputaufgabegibtloesung
{2}
{

Es sei $n$ eine natürliche Zahl. Wann ist die Zahl
\mathl{n^2-1}{} eine \definitionsverweis {Primzahl}{}{?}

}
{} {}




\inputaufgabe
{0}
{

}
{} {}




\inputaufgabegibtloesung
{4}
{

Es sei $M$ eine $n$-elementige Menge und sei
\mathdisp {B={ \left\{ F:M \rightarrow M \text{ Abbildung} \mid F \text{ bijektiv} \right\} }} { . }
Zeige, dass
\mavergleichskettedisp
{\vergleichskette
{ { \# \left( B \right) } }
{ =} {n! }
{ } { }
{ } { }
{ } {}
} {}{}{} ist.

}
{} {}




\inputaufgabegibtloesung
{4 (1+3)}
{

\aufzaehlungzwei {Berechne $3^2$ im Vierersystem, $4^2$ im Fünfersystem und $9^2$ im Zehnersystem. } {Zeige, dass im kleinen Einmaleins \zusatzklammer {ohne die Zehnerreihe} {} {} zur Basis
\mathl{n \geq 3}{} rechts unten die Zahl mit den Ziffern
\mathl{n-2}{} und $1$ steht. }

}
{} {}




\inputaufgabegibtloesung
{2}
{

Bestimme den Exponenten zu $3$ von
\mathl{72657}{.}

}
{} {}




\inputaufgabegibtloesung
{5 (1+1+1+2)}
{

Ein Zug ist $500$ Meter lang \zusatzklammer {ohne Lokomotive} {} {} und bewegt sich mit $180$ Stundenkilometer. Lucy Sonnenschein hat ihr Fahrrad mit in den Zug genommen und fährt mit einer Geschwindigkeit von $20$ Metern pro Sekunde von ganz vorne nach ganz hinten. \aufzaehlungvier{Wie viele Sekunden benötigt Lucy für die gesamte Zuglänge? }{Welche Geschwindigkeit \zusatzklammer {in Meter pro Sekunde} {} {} hat Lucy bezogen auf die Umgebung? }{Welche Entfernung \zusatzklammer {in Meter} {} {} legt der Zug während der Fahrradfahrt zurück? }{Berechne auf zwei verschiedene Arten, welche Entfernung Lucy während ihrer Fahrradfahrt bezogen auf die Umgebung zurücklegt. }

}
{} {}




\inputaufgabegibtloesung
{2}
{

Es sei $K$ ein \definitionsverweis {angeordneter Körper}{}{} und $x,y \geq 0$. Zeige, dass
\mavergleichskette
{\vergleichskette
{x }
{ \geq }{y }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} genau dann gilt, wenn
\mavergleichskette
{\vergleichskette
{x^2 }
{ \geq }{y^2 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} gilt.

}
{} {}




\inputaufgabegibtloesung
{4}
{

Es seien
\mathl{x,y}{} rationale Zahlen. Zeige, dass
\mavergleichskettedisp
{\vergleichskette
{ x- \left \lfloor x \right \rfloor }
{ =} { y- \left \lfloor y \right \rfloor }
{ } { }
{ } { }
{ } { }
} {}{}{} genau dann gilt, wenn es ein
\mathl{n \in \Z}{} mit
\mathl{y=x+n}{} gibt.

}
{} {}




\inputaufgabegibtloesung
{3}
{

Bestimme vom achten Teil des Dezimalbruches
\mathdisp {760982393473{,}90354771045729} { }
die dritte Nachkommaziffer.

}
{} {}




\inputaufgabegibtloesung
{3}
{

Im Bruch
\mathdisp {{ \frac{ 3024 }{ 1312 } }} { }
sind Zähler und Nenner im Fünfersystem gegeben. Rechne ihn ins Zehnersystem um.

}
{} {}