Kurs:Lineare Algebra/Teil I/21/Klausur/latex

Aus Wikiversity

%Daten zur Institution

%\input{Dozentdaten}

%\renewcommand{\fachbereich}{Fachbereich}

%\renewcommand{\dozent}{Prof. Dr. . }

%Klausurdaten

\renewcommand{\klausurgebiet}{ }

\renewcommand{\klausurtyp}{ }

\renewcommand{\klausurdatum}{ . 20}

\klausurvorspann {\fachbereich} {\klausurdatum} {\dozent} {\klausurgebiet} {\klausurtyp}

%Daten für folgende Punktetabelle


\renewcommand{\aeins}{ 3 }

\renewcommand{\azwei}{ 3 }

\renewcommand{\adrei}{ 4 }

\renewcommand{\avier}{ 5 }

\renewcommand{\afuenf}{ 7 }

\renewcommand{\asechs}{ 4 }

\renewcommand{\asieben}{ 3 }

\renewcommand{\aacht}{ 1 }

\renewcommand{\aneun}{ 8 }

\renewcommand{\azehn}{ 4 }

\renewcommand{\aelf}{ 3 }

\renewcommand{\azwoelf}{ 3 }

\renewcommand{\adreizehn}{ 4 }

\renewcommand{\avierzehn}{ 3 }

\renewcommand{\afuenfzehn}{ 4 }

\renewcommand{\asechzehn}{ 2 }

\renewcommand{\asiebzehn}{ 3 }

\renewcommand{\aachtzehn}{ 64 }

\renewcommand{\aneunzehn}{ }

\renewcommand{\azwanzig}{ }

\renewcommand{\aeinundzwanzig}{ }

\renewcommand{\azweiundzwanzig}{ }

\renewcommand{\adreiundzwanzig}{ }

\renewcommand{\avierundzwanzig}{ }

\renewcommand{\afuenfundzwanzig}{ }

\renewcommand{\asechsundzwanzig}{ }

\punktetabellesiebzehn

\klausurnote

\newpage


\setcounter{section}{0}




\inputaufgabegibtloesung
{3}
{

Definiere die folgenden \zusatzklammer {kursiv gedruckten} {} {} Begriffe. \aufzaehlungsechs{Die \stichwort {Vereinigung} {} zu einer Mengenfamilie
\mathbed {M_i} {}
{i \in I} {}
{} {} {} {,} in einer Grundmenge $G$.

}{Die \stichwort {Fakultät} {} einer natürlichen Zahl $n$.

}{Ein \stichwort {Untervektorraum} {}
\mathl{U \subseteq V}{} in einem $K$-Vektorraum $V$.

}{Die \stichwort {Spur} {} zu einer \definitionsverweis {linearen Abbildung}{}{} \maabb {\varphi} {V} {V } {} auf einem \definitionsverweis {endlichdimensionalen}{}{} $K$-\definitionsverweis {Vektorraum}{}{} $V$.

}{Eine \stichwort {Fahne} {} in einem $n$-\definitionsverweis {dimensionalen}{}{} $K$-\definitionsverweis {Vektorraum}{}{} $V$.

}{Die \stichwort {baryzentrischen Koordinaten} {} zu einem Punkt
\mathl{P \in E}{} in einem \definitionsverweis {affinen Raum}{}{} $E$ über dem $K$-\definitionsverweis {Vektorraum}{}{} $V$ bezüglich einer \definitionsverweis {affinen Basis}{}{}
\mathbed {P_i} {}
{i \in I} {}
{} {} {} {.} }

}
{} {}




\inputaufgabegibtloesung
{3}
{

Formuliere die folgenden Sätze. \aufzaehlungdrei{Der \stichwort {Charakterisierungssatz} {} für eine \definitionsverweis {Basis}{}{}
\mathl{v_1 , \ldots , v_n}{} in einem $K$-\definitionsverweis {Vektorraum}{}{} $V$.}{Der Satz über den Zusammenhang von Zeilenumformungen und Elementarmatrizen.}{Der Satz über die \stichwort {Charakterisierung von trigonalisierbaren Abbildungen} {} \maabbdisp {\varphi} {V} {V } {} auf einem endlichdimensionalen $K$-Vektorraum $V$.}

}
{} {}




\inputaufgabegibtloesung
{4}
{

Es sei $K$ ein \definitionsverweis {Körper}{}{} und
\mathdisp {\begin{matrix} a _{ 1 1 } x _1 + a _{ 1 2 } x _2 + \cdots + a _{ 1 n } x _{ n } & = & 0 \\ a _{ 2 1 } x _1 + a _{ 2 2 } x _2 + \cdots + a _{ 2 n } x _{ n } & = & 0 \\ \vdots & \vdots & \vdots \\ a _{ m 1 } x _1 + a _{ m 2 } x _2 + \cdots + a _{ m n } x _{ n } & = & 0 \end{matrix}} { }
ein homogenes \definitionsverweis {lineares Gleichungssystem}{}{} über $K$. Zeige, dass die Menge aller Lösungen des Gleichungssystems ein \definitionsverweis {Untervektorraum}{}{} des $K^n$ ist. Wie verhält sich dieser Lösungsraum zu den Lösungsräumen der einzelnen Gleichungen?

}
{} {}




\inputaufgabegibtloesung
{5 (1+1+1+1+1)}
{

Der $\R$-\definitionsverweis {Vektorraum}{}{} $\R^2$ sei zusätzlich mit der komponentenweisen Multiplikation versehen. Bestimme, welche der folgenden Teilmengen unter dieser Multiplikation abgeschlossen sind. \aufzaehlungfuenf{Die Punktmenge
\mathl{\{ \left( 0 , \, 0 \right), \left( 0 , \, 1 \right), \left( 1 , \, 0 \right) , \left( 1 , \, 1 \right) \}}{.} }{Die Gerade
\mathdisp {{ \left\{ \left( x , \, y \right) \mid y = 3x \right\} }} { . }
}{Das Achsenkreuz
\mathdisp {{ \left\{ \left( x , \, y \right) \mid x = 0 \text{ oder } y = 0 \right\} }} { . }
}{Die Hyperbel
\mathdisp {{ \left\{ \left( x , \, y \right) \mid xy = 1 \right\} }} { . }
}{Die Parabel
\mathdisp {{ \left\{ \left( x , \, y \right) \mid y = x^2 \right\} }} { . }
}

}
{} {}




\inputaufgabegibtloesung
{7 (5+2)}
{

Es sei $M$ eine $m \times n$-\definitionsverweis {Matrix}{}{} über dem \definitionsverweis {Körper}{}{} $K$ mit dem \definitionsverweis {Rang}{}{} $r$. \aufzaehlungzwei {Zeige, dass es eine
\mathl{r \times n}{-}Matrix $A$ und eine
\mathl{m \times r}{-}Matrix $B$, beide mit dem Rang $r$, mit
\mavergleichskette
{\vergleichskette
{M }
{ = }{B \circ A }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} gibt. } {Sei
\mavergleichskette
{\vergleichskette
{s }
{ < }{r }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.} Zeige, dass es nicht möglich ist,
\mavergleichskette
{\vergleichskette
{M }
{ = }{B \circ A }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} mit einer
\mathl{s \times n}{-}Matrix $A$ und einer
\mathl{m \times s}{-}Matrix $B$ zu schreiben. }

}
{} {}




\inputaufgabegibtloesung
{4}
{

Es sei $K$ ein \definitionsverweis {endlicher Körper}{}{} mit $q$ Elementen. Bestimme die Anzahl der nicht \definitionsverweis {invertierbaren}{}{} $2 \times 2$-\definitionsverweis {Matrizen}{}{} über $K$.

}
{} {}




\inputaufgabegibtloesung
{3}
{

Man gebe ein Beispiel für einen $K$-\definitionsverweis {Vektorraum}{}{} $V$ und eine \definitionsverweis {lineare Abbildung}{}{} \maabb {\varphi} {V} {V } {,} die \definitionsverweis {surjektiv}{}{,} aber nicht \definitionsverweis {injektiv}{}{} ist.

}
{} {}




\inputaufgabegibtloesung
{1}
{

Bestimme, abhängig von
\mathl{a,b,c,d}{,} den \definitionsverweis {Rang}{}{} der Matrix
\mathdisp {\begin{pmatrix} a & 4b & a-c & d \\ 0 & b & b^2 & b^3 \\ 0 & 0 & c^2 & a^2 \\ 0 & 0 & 0 & d \end{pmatrix}} { . }

}
{} {}




\inputaufgabegibtloesung
{8 (3+3+2)}
{

\aufzaehlungdrei{Beweise den Determinantenmultiplikationssatz
\mavergleichskettedisp
{\vergleichskette
{ \det \left( A \circ B \right) }
{ =} { \det \left( A \right) \det \left( B \right) }
{ } { }
{ } { }
{ } { }
} {}{}{} für den Fall, dass $A$ eine Elementarmatrix ist. }{Beweise den Determinantenmultiplikationssatz
\mavergleichskettedisp
{\vergleichskette
{ \det \left( A \circ B \right) }
{ =} { \det \left( A \right) \det \left( B \right) }
{ } { }
{ } { }
{ } { }
} {}{}{} für den Fall, dass $A$ ein Produkt aus Elementarmatrizen ist. }{Beweise den Determinantenmultiplikationssatz mit Hilfe von (2). }

}
{} {}




\inputaufgabegibtloesung
{4}
{

Beweise den Satz über die Beschreibung des Signums mit Fehlständen.

}
{} {}




\inputaufgabegibtloesung
{3}
{

Bestimme im \definitionsverweis {Polynomring}{}{}
\mathl{K[X]}{} über einem \definitionsverweis {Körper}{}{} $K$ die \definitionsverweis {invertierbaren}{}{} Elemente, also Polynome $P$, für die es ein weiteres Polynom $Q$ mit
\mavergleichskette
{\vergleichskette
{PQ }
{ = }{1 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} gibt.

}
{} {}




\inputaufgabegibtloesung
{3}
{

Es sei
\mavergleichskettedisp
{\vergleichskette
{ x^2 + p x +q }
{ =} {0 }
{ } { }
{ } { }
{ } { }
} {}{}{} eine quadratische Gleichung über einem Körper $K$, und es sei
\mavergleichskette
{\vergleichskette
{ r }
{ \neq }{ 0 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} eine Lösung davon. Zeige, dass auch
\mathl{{ \frac{ q }{ r } }}{} eine Lösung der Gleichung ist.

}
{} {}




\inputaufgabegibtloesung
{4}
{

Beweise den Satz über die Diagonalisierbarkeit und Eigenräume.

}
{} {}




\inputaufgabegibtloesung
{3}
{

Bestimme in $\Z$ mit Hilfe des euklidischen Algorithmus den \definitionsverweis {größten gemeinsamen Teiler}{}{} von $71894$ und $45327$.

}
{} {}




\inputaufgabegibtloesung
{4}
{

Es seien \mathkor {} {V} {und} {W} {} \definitionsverweis {Vektorräume}{}{} über $K$ der gleichen \definitionsverweis {Dimension}{}{} $n$ und es seien
\mavergleichskettedisp
{\vergleichskette
{0 }
{ =} {V_0 }
{ \subset} {V_1 }
{ \subset \ldots \subset} {V_{n-1} }
{ \subset} {V_n }
} {
\vergleichskettefortsetzung
{ =} {V }
{ } {}
{ } {}
{ } {}
}{}{} und
\mavergleichskettedisp
{\vergleichskette
{0 }
{ =} {W_0 }
{ \subset} {W_1 }
{ \subset \ldots \subset} {W_{n-1} }
{ \subset} {W_n }
} {
\vergleichskettefortsetzung
{ =} {W }
{ } {}
{ } {}
{ } {}
}{}{} \definitionsverweis {Fahnen}{}{} in \mathkor {} {V} {bzw.} {W} {.} Zeige, dass es eine \definitionsverweis {bijektive}{}{} \definitionsverweis {lineare Abbildung}{}{} \maabbdisp {\varphi} {V} {W } {} mit
\mavergleichskettedisp
{\vergleichskette
{\varphi(V_i) }
{ =} { W_i }
{ } { }
{ } { }
{ } { }
} {}{}{} für alle
\mavergleichskette
{\vergleichskette
{i }
{ = }{0,1 , \ldots , n }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} gibt.

}
{} {}




\inputaufgabegibtloesung
{2}
{

Bestimme, ob die Matrix
\mathdisp {\begin{pmatrix} 1 & 7 \\ 3 & 21 \end{pmatrix}} { }
\definitionsverweis {nilpotent}{}{} ist.

}
{} {}




\inputaufgabegibtloesung
{3}
{

Bestimme, ob die beiden Matrizen
\mathdisp {M = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix} \text{ und } N= \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}} { }
zueinander \definitionsverweis {ähnlich}{}{} sind.

}
{} {}