Kurs:Mathematik für Anwender (Osnabrück 2011-2012)/Teil I/Arbeitsblatt 1/latex
\setcounter{section}{1}
\zwischenueberschrift{Aufwärmaufgaben}
\inputaufgabe
{}
{
Es seien
$A,\, B$ und $C$
Mengen. Man beweise die folgenden Identitäten.
\aufzaehlungneun{
\mavergleichskettedisp
{\vergleichskette
{ A \cup \emptyset
}
{ =} { A
}
{ } {
}
{ } {
}
{ } {
}
}
{}{}{,}
}{
\mavergleichskettedisp
{\vergleichskette
{ A \cap \emptyset
}
{ =} { \emptyset
}
{ } {
}
{ } {
}
{ } {
}
}
{}{}{,}
}{
\mavergleichskettedisp
{\vergleichskette
{A \cap B
}
{ =} { B \cap A
}
{ } {
}
{ } {
}
{ } {
}
}
{}{}{,}
}{
\mavergleichskettedisp
{\vergleichskette
{A \cup B
}
{ =} { B \cup A
}
{ } {
}
{ } {
}
{ } {
}
}
{}{}{,}
}{
\mavergleichskettedisp
{\vergleichskette
{ A \cap (B \cap C)
}
{ =} { (A \cap B) \cap C
}
{ } {
}
{ } {
}
{ } {
}
}
{}{}{,}
}{
\mavergleichskettedisp
{\vergleichskette
{ A \cup (B \cup C)
}
{ =} { (A \cup B) \cup C
}
{ } {
}
{ } {
}
{ } {
}
}
{}{}{,}
}{
\mavergleichskettedisp
{\vergleichskette
{ A \cap (B \cup C)
}
{ =} { (A \cap B) \cup (A \cap C)
}
{ } {
}
{ } {
}
{ } {
}
}
{}{}{,}
}{
\mavergleichskettedisp
{\vergleichskette
{ A \cup (B \cap C)
}
{ =} { (A \cup B) \cap (A \cup C)
}
{ } {
}
{ } {
}
{ } {
}
}
{}{}{,}
}{
\mavergleichskettedisp
{\vergleichskette
{ A \setminus (B \cup C)
}
{ =} { (A \setminus B) \cap (A \setminus C)
}
{ } {
}
{ } {
}
{ } {
}
}
{}{}{.}
}
}
{} {}
\inputaufgabe
{}
{
Beweise die mengentheoretischen Fassungen einiger aristotelischer Syllogismen. Dabei bezeichnen $A,B,C$ Mengen.
\aufzaehlungfuenf{Modus Barbara: Aus
\mavergleichskette
{\vergleichskette
{ B
}
{ \subseteq }{ A
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}
und
\mavergleichskette
{\vergleichskette
{ C
}
{ \subseteq }{ B
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}
folgt
\mavergleichskette
{\vergleichskette
{ C
}
{ \subseteq }{ A
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{.}
}{Modus Celarent: Aus
\mavergleichskette
{\vergleichskette
{ B \cap A
}
{ = }{ \emptyset
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}
und
\mavergleichskette
{\vergleichskette
{ C
}
{ \subseteq }{ B
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}
folgt
\mavergleichskette
{\vergleichskette
{ C \cap A
}
{ = }{ \emptyset
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{.}
}{Modus Darii: Aus
\mavergleichskette
{\vergleichskette
{ B
}
{ \subseteq }{ A
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}
und
\mavergleichskette
{\vergleichskette
{ C \cap B
}
{ \neq }{ \emptyset
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}
folgt
\mavergleichskette
{\vergleichskette
{ C \cap A
}
{ \neq }{ \emptyset
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{.}
}{Modus Ferio: Aus
\mavergleichskette
{\vergleichskette
{ B \cap A
}
{ = }{ \emptyset
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}
und
\mavergleichskette
{\vergleichskette
{ C \cap B
}
{ \neq }{ \emptyset
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}
folgt
\mavergleichskette
{\vergleichskette
{ C
}
{ \not \subseteq }{ A
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{.}
}{Modus Baroco: Aus
\mavergleichskette
{\vergleichskette
{ B
}
{ \subseteq }{ A
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}
und
\mavergleichskette
{\vergleichskette
{ B
}
{ \not \subseteq }{ C
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}
folgt
\mavergleichskette
{\vergleichskette
{ A
}
{ \not \subseteq }{ C
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{.}
}
}
{} {}
\inputaufgabe
{}
{
Beweise durch Induktion die folgenden Formeln.
\aufzaehlungdrei{
\mavergleichskettedisp
{\vergleichskette
{ \sum_{i = 1}^n i
}
{ =} { \frac{n(n+1)}{2}
}
{ } {
}
{ } {
}
{ } {
}
}
{}{}{,}
}{
\mavergleichskettedisp
{\vergleichskette
{ \sum_{i = 1}^n i^2
}
{ =} { \frac{n(n+1)(2n+1)}{6}
}
{ } {
}
{ } {
}
{ } {
}
}
{}{}{.}
}{
\mavergleichskettedisp
{\vergleichskette
{ \sum_{i = 1}^n i^3
}
{ =} { { \left( \frac{n(n+1)}{2} \right) }^2
}
{ } {
}
{ } {
}
{ } {
}
}
{}{}{.}
}
}
{} {}
\inputaufgabe
{}
{
Zeige, dass mit der einzigen Ausnahme
\mavergleichskette
{\vergleichskette
{ n
}
{ = }{ 3
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}
die Beziehung
\mavergleichskettedisp
{\vergleichskette
{ 2^n
}
{ \geq} {n^2
}
{ } {
}
{ } {
}
{ } {
}
}
{}{}{}
gilt.
}
{} {}
\inputaufgabegibtloesung
{}
{
Zeige durch vollständige Induktion, dass für jedes
\mavergleichskette
{\vergleichskette
{n
}
{ \in }{ \N
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}
die Zahl
\mathdisp {6^{n+2} + 7^{2n+1}} { }
ein Vielfaches von $43$ ist.
}
{} {}
\inputaufgabe
{}
{
Beweise durch Induktion die Abschätzung
\mavergleichskettedisp
{\vergleichskette
{ 1 \cdot 2^2 \cdot 3^3 \cdots n^n
}
{ \leq} { n^\frac{n(n+1)}{2}
}
{ } {
}
{ } {
}
{ } {
}
}
{}{}{.}
}
{} {}
\inputaufgabegibtloesung
{}
{
Beweise durch Induktion für alle
\mavergleichskette
{\vergleichskette
{ n
}
{ \in }{ \N_+
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}
die Formel
\mavergleichskettedisp
{\vergleichskette
{ \sum_{k = 1}^n (-1)^{k-1} k^2
}
{ =} { (-1)^{n+1} { \frac{ n(n+1) }{ 2 } }
}
{ } {
}
{ } {
}
{ } {
}
}
{}{}{.}
}
{} {}
\inputaufgabe
{}
{
Die Städte
\mathl{S_1, \ldots, S_n}{} seien untereinander durch Straßen verbunden und zwischen zwei Städten gibt es immer genau eine Straße. Wegen Bauarbeiten sind zur Zeit alle Straßen nur in eine Richtung befahrbar. Zeige, dass es trotzdem
mindestens eine Stadt gibt, von der aus alle anderen Städte erreichbar sind.
}
{} {}
\zwischenueberschrift{Aufgaben zum Abgeben}
\inputaufgabe
{4}
{
Es seien
\mathkor {} {A} {und} {B} {}
Mengen. Zeige, dass die folgenden Aussagen zueinander äquivalent sind.
\aufzaehlungsechs{
\mavergleichskette
{\vergleichskette
{ A
}
{ \subseteq }{B
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{,}
}{
\mavergleichskette
{\vergleichskette
{ A \cap B
}
{ = }{ A
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{,}
}{
\mavergleichskette
{\vergleichskette
{ A \cup B
}
{ = }{ B
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{,}
}{
\mavergleichskette
{\vergleichskette
{ A \setminus B
}
{ = }{ \emptyset
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{,}
}{Es gibt eine Menge $C$ mit
\mavergleichskette
{\vergleichskette
{ B
}
{ = }{ A \cup C
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{,}
}{Es gibt eine Menge $D$ mit
\mavergleichskette
{\vergleichskette
{ A
}
{ = }{ B \cap D
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{.}
}
}
{} {}
\inputaufgabegibtloesung
{3}
{
Beweise durch Induktion, dass die Summe von aufeinanderfolgenden ungeraden Zahlen \zusatzklammer {beginnend bei $1$} {} {} stets eine Quadratzahl ist.
}
{} {}
\inputaufgabe
{3}
{
Es sei
\mavergleichskette
{\vergleichskette
{m
}
{ \in }{\N
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{.}
Zeige durch Induktion die Gleichheit
\mavergleichskettedisp
{\vergleichskette
{ (2m+1) \prod_{i = 1}^m (2i-1)^2
}
{ =} { \prod_{k = 1}^m (4k^2-1)
}
{ } {
}
{ } {
}
{ } {
}
}
{}{}{.}
}
{} {}
\inputaufgabe
{4}
{
Eine $n$-Schokolade ist ein rechteckiges Raster, das durch
\mathl{a -1}{} Längsrillen und
\mathl{b-1}{} Querrillen in
\mavergleichskette
{\vergleichskette
{ n
}
{ = }{a \cdot b
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}
\zusatzklammer {
\mavergleichskettek
{\vergleichskettek
{a,b
}
{ \in }{\N_+
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}} {} {}
mundgerechte kleinere Rechtecke eingeteilt ist. Ein Teilungsschritt an einer Schokolade ist das vollständige Durchtrennen einer Schokolade längs einer Längs- oder Querrille. Eine vollständige Aufteilung einer Schokolade ist eine Folge von Teilungsschritten
\zusatzklammer {an der Ausgangsschokolade oder an einer zuvor erhaltenen Zwischenschokolade} {} {,}
deren Endprodukt aus den einzelnen Mundgerechtecken besteht. Zeige durch Induktion, dass jede vollständige Aufteilung einer $n$-Schokolade aus genau
\mathl{n-1}{} Teilungsschritten besteht.
}
{} {}
Kurs:Mathematik für Anwender (Osnabrück 2011-2012)/Teil I | >> |
---|