Zum Inhalt springen

Kurs:Mathematik für Anwender (Osnabrück 2020-2021)/Teil II/Arbeitsblatt 44/latex

Aus Wikiversity

\setcounter{section}{44}






\zwischenueberschrift{Übungsaufgaben}




\inputaufgabe
{}
{

Es sei
\mathl{\left\langle - , - \right\rangle}{} eine \definitionsverweis {Bilinearform}{}{} auf einem $K$-\definitionsverweis {Vektorraum}{}{} $V$. Zeige
\mavergleichskettedisp
{\vergleichskette
{ \left\langle 0 , v \right\rangle }
{ =} { 0 }
{ } { }
{ } { }
{ } { }
} {}{}{} für alle
\mathl{v \in V}{.}

}
{} {}




\inputaufgabe
{}
{

Überprüfe, ob die folgenden Abbildungen \maabbdisp {} {\R^2 \times \R^2} {\R } {} \definitionsverweis {Bilinearformen}{}{} sind. \aufzaehlungvier{
\mavergleichskettedisp
{\vergleichskette
{\Psi(v,w) }
{ =} { \Vert { v} \Vert }
{ } { }
{ } { }
{ } { }
} {}{}{.} }{
\mavergleichskettedisp
{\vergleichskette
{\Psi(v,w) }
{ =} { \Vert { v- w} \Vert }
{ } { }
{ } { }
{ } { }
} {}{}{.} }{
\mavergleichskettedisp
{\vergleichskette
{\Psi(v,w) }
{ =} { \Vert {v} \Vert \cdot \Vert {w} \Vert }
{ } { }
{ } { }
{ } { }
} {}{}{.} }{
\mavergleichskettedisp
{\vergleichskette
{\Psi(v,w) }
{ =} { \angle ( v, w) }
{ } { }
{ } { }
{ } { }
} {}{}{.} }

}
{} {}




\inputaufgabe
{}
{

Bestimme die \definitionsverweis {Gramsche Matrix}{}{} des \definitionsverweis {Standardskalarproduktes}{}{} im $\R^2$ bezüglich der \definitionsverweis {Basis}{}{} $\begin{pmatrix} 2 \\-3 \end{pmatrix}$ und $\begin{pmatrix} -5 \\1 \end{pmatrix}$.

}
{} {}




\inputaufgabegibtloesung
{}
{

Bestimme die \definitionsverweis {Gramsche Matrix}{}{} zur \definitionsverweis {Determinante}{}{} auf dem $K^2$ bezüglich der \definitionsverweis {Standardbasis}{}{.}

}
{} {}




\inputaufgabe
{}
{

Es sei $K$ ein \definitionsverweis {Körper}{}{,} $V$ ein \definitionsverweis {endlichdimensionaler}{}{} $K$-\definitionsverweis {Vektor\-raum}{}{} und
\mathl{\left\langle - , - \right\rangle}{} eine \definitionsverweis {Bilinearform}{}{} auf $V$. Zeige, dass
\mathl{\left\langle - , - \right\rangle}{} genau dann \definitionsverweis {symmetrisch}{}{} ist, wenn es eine Basis
\mathl{v_1 , \ldots , v_n}{} von $V$ mit
\mavergleichskettedisp
{\vergleichskette
{ \left\langle v_i , v_j \right\rangle }
{ =} { \left\langle v_j , v_i \right\rangle }
{ } { }
{ } { }
{ } { }
} {}{}{} für alle
\mavergleichskette
{\vergleichskette
{1 }
{ \leq }{ i,j }
{ \leq }{ n }
{ }{ }
{ }{ }
} {}{}{} gibt.

}
{} {}




\inputaufgabe
{}
{

Es sei $V$ ein \definitionsverweis {endlichdimensionaler}{}{} $K$-\definitionsverweis {Vektorraum}{}{} mit einer \definitionsverweis {Bilinearform}{}{}
\mathl{\left\langle - , - \right\rangle}{.} Zeige, dass diese Form genau dann \definitionsverweis {symmetrisch}{}{} ist, wenn die \definitionsverweis {Gramsche Matrix}{}{} von ihr bezüglich einer \definitionsverweis {Basis}{}{} \definitionsverweis {symmetrisch}{}{} ist.

}
{} {}




\inputaufgabe
{}
{

Zeige, dass die \definitionsverweis {Determinante}{}{} in der Dimension zwei, also die Abbildung \maabbeledisp {} {K^2 \times K^2} {K } {( \begin{pmatrix} x_1 \\y_1 \end{pmatrix}, \begin{pmatrix} x_2 \\y_2 \end{pmatrix} )} { x_1y_2 -x_2y_1 } {,} keine \definitionsverweis {symmetrische}{}{} \definitionsverweis {Bilinearform}{}{} ist.

}
{} {}





\inputaufgabegibtloesung
{}
{

Zeige, dass es eine \definitionsverweis {Bilinearform}{}{}
\mathl{\left\langle - , - \right\rangle}{} auf einem Vektorraum $V$ geben kann, die nicht die \definitionsverweis {Nullform}{}{} ist, für die aber
\mavergleichskettedisp
{\vergleichskette
{ \left\langle v , v \right\rangle }
{ =} {0 }
{ } { }
{ } { }
{ } { }
} {}{}{} für alle
\mathl{v \in V}{} ist.

}
{} {}




\inputaufgabegibtloesung
{}
{

Es sei $K$ ein \definitionsverweis {Körper}{}{,} $V$ ein \definitionsverweis {endlichdimensionaler}{}{} $K$-\definitionsverweis {Vektorraum}{}{} und
\mathl{\left\langle - , - \right\rangle}{} eine \definitionsverweis {symmetrische Bilinearform}{}{} auf $V$. Zeige, dass $V$ eine \definitionsverweis {Orthogonalbasis}{}{} besitzt.

}
{} {}




\inputaufgabe
{}
{

Untersuche, welche der folgenden Abbildungen \maabb {\varphi} { \R^2 \times \R^2 } { \R } {} bilinear sind. Wenn ja, so untersuche die jeweilige Abbildung auch auf die Eigenschaften alternierend und symmetrisch. \aufzaehlungdrei{
\mathl{\varphi(x,y):=x_1y_1}{.} }{
\mathl{\varphi(x,y):=x_1x_2+y_1y_2}{.} }{
\mathl{\varphi(x,y):=2x_1y_2 + 3x_2y_1}{.} }

}
{} {}





\inputaufgabe
{}
{

Es sei $V$ ein $n$-\definitionsverweis {dimensionaler}{}{} \definitionsverweis {reeller Vektorraum}{}{} und
\mathl{\left\langle - , - \right\rangle}{} eine \definitionsverweis {symmetrische Bilinearform}{}{} auf $V$ vom \definitionsverweis {Typ}{}{}
\mathl{(p,q)}{.} Zeige, dass
\mavergleichskettedisp
{\vergleichskette
{p+q }
{ \leq} {n }
{ } { }
{ } { }
{ } { }
} {}{}{} ist.

}
{} {}




\inputaufgabe
{}
{

Man gebe ein Beispiel einer \definitionsverweis {symmetrischen Bilinearform}{}{,} das zeigt, dass der Unterraum maximaler Dimension, auf dem die Ein\-schränkung der Form \definitionsverweis {positiv definit}{}{} ist, nicht eindeutig bestimmt ist.

}
{} {}




\inputaufgabe
{}
{

Auf dem $\R^2$ sei durch
\mavergleichskettedisp
{\vergleichskette
{ \left\langle \begin{pmatrix} x_1 \\y_1 \end{pmatrix} , \begin{pmatrix} x_2 \\y_2 \end{pmatrix} \right\rangle }
{ =} {x_1x_2 -y_1y_2 }
{ } { }
{ } { }
{ } { }
} {}{}{} eine \definitionsverweis {symmetrische Bilinearform}{}{} gegeben. Bestimme zu jeder Geraden $G$ durch den Nullpunkt, ob die \definitionsverweis {Einschränkung}{}{} der Form auf die Gerade \definitionsverweis {positiv definit}{}{,} \definitionsverweis {negativ definit}{}{} oder die \definitionsverweis {Nullform}{}{} ist.

}
{} {}




\inputaufgabe
{}
{

Es sei $V$ ein \definitionsverweis {endlichdimensionaler}{}{} $\R$-\definitionsverweis {Vektorraum}{}{} mit einer \definitionsverweis {Bilinearform}{}{} vom \definitionsverweis {Typ}{}{}
\mathl{(p,q)}{} und es sei
\mavergleichskette
{\vergleichskette
{U }
{ \subseteq }{V }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} ein \definitionsverweis {Untervektorraum}{}{.} Die Einschränkung der Bilinearform sei vom Typ
\mathl{(p',q')}{.} Zeige
\mavergleichskette
{\vergleichskette
{p' }
{ \leq }{p }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} und
\mavergleichskette
{\vergleichskette
{q' }
{ \leq }{q }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.}

}
{} {}




\inputaufgabegibtloesung
{}
{

Es sei $V$ ein $n$-\definitionsverweis {dimensionaler}{}{} $\R$-\definitionsverweis {Vektorraum}{}{} mit einer \definitionsverweis {Bilinearform}{}{} vom \definitionsverweis {Typ}{}{}
\mathl{(p,q)}{} und es sei
\mavergleichskette
{\vergleichskette
{U }
{ \subseteq }{V }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} ein $d$-dimensionaler \definitionsverweis {Untervektorraum}{}{.} Die Einschränkung der Bilinearform sei vom Typ
\mathl{(p',q')}{.} Zeige
\mavergleichskettedisp
{\vergleichskette
{p' }
{ \geq} {d+p-n }
{ } { }
{ } { }
{ } { }
} {}{}{.}

}
{} {}




\inputaufgabe
{}
{

Man gebe ein Beispiel für einen \definitionsverweis {endlichdimensionalen}{}{} \definitionsverweis {reellen Vektorraum}{}{} $V$ mit einer \definitionsverweis {symmetrischen}{}{} \definitionsverweis {Bilinearform}{}{}
\mathl{\left\langle - , - \right\rangle}{} auf $V$ und einer \definitionsverweis {Basis}{}{}
\mathl{u_1 , \ldots , u_n}{} von $V$ derart, dass
\mavergleichskette
{\vergleichskette
{ \left\langle u_i , u_i \right\rangle }
{ > }{ 0 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} für alle
\mavergleichskette
{\vergleichskette
{i }
{ = }{1 , \ldots , n }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} ist, aber
\mathl{\left\langle - , - \right\rangle}{} nicht \definitionsverweis {positiv definit}{}{} ist.

}
{} {}




\inputaufgabe
{}
{

Es sei $V$ ein \definitionsverweis {endlichdimensionaler}{}{} \definitionsverweis {reeller Vektorraum}{}{} mit einer \definitionsverweis {symmetrischen}{}{} \definitionsverweis {Bilinearform}{}{}
\mathl{\left\langle - , - \right\rangle}{} auf $V$. Es sei
\mathl{u_1 , \ldots , u_n}{} eine \definitionsverweis {Orthogonalbasis}{}{} auf $V$ mit der Eigenschaft
\mathl{\left\langle u_i , u_i \right\rangle >0}{} für alle
\mathl{i=1 , \ldots , n}{.} Zeige, dass
\mathl{\left\langle - , - \right\rangle}{} \definitionsverweis {positiv definit}{}{} ist.

}
{} {}




\inputaufgabe
{}
{

Es sei $V$ ein \definitionsverweis {endlichdimensionaler}{}{} \definitionsverweis {reeller Vektorraum}{}{} und
\mathl{\left\langle - , - \right\rangle}{} eine \definitionsverweis {symmetrische}{}{} \definitionsverweis {Bilinearform}{}{} auf $V$. Zeige, dass die \definitionsverweis {Gramsche Matrix}{}{} zu dieser Bilinearform bezüglich einer geeigneten Basis eine \definitionsverweis {Diagonalmatrix}{}{} ist, deren Diagonaleinträge
\mathl{1,-1}{} oder $0$ sind.

}
{} {}




\inputaufgabe
{}
{

Es sei $M$ eine \definitionsverweis {symmetrische}{}{} reelle $n \times n$-\definitionsverweis {Matrix}{}{.} Zeige, dass es eine \definitionsverweis {invertierbare Matrix}{}{} $A$ derart gibt, dass
\mavergleichskettedisp
{\vergleichskette
{ { A^{ \text{tr} } } M A }
{ =} { D }
{ } { }
{ } { }
{ } { }
} {}{}{} eine \definitionsverweis {Diagonalmatrix}{}{} ist, deren Diagonaleinträge $1,-1$ oder $0$ sind.

}
{} {}




\inputaufgabe
{}
{

Es sei $V$ ein \definitionsverweis {endlichdimensionaler}{}{} \definitionsverweis {reeller Vektorraum}{}{} und
\mathl{\left\langle - , - \right\rangle}{} eine \definitionsverweis {symmetrische Bilinearform}{}{} auf $V$. Es seien \mathkor {} {G} {und} {H} {} die \definitionsverweis {Gramschen Matrizen}{}{} zu dieser Form bezüglich der Basen $\mathfrak{ u }$ und $\mathfrak{ v }$. Zeige, dass die \definitionsverweis {Determinante}{}{} von $G$ genau dann positiv \zusatzklammer {negativ, $0$} {} {} ist, wenn dies auf die Determinante von $H$ zutrifft.

}
{} {}




\inputaufgabe
{}
{

Bestimme den \definitionsverweis {Typ}{}{} der durch die \definitionsverweis {Gramsche Matrix}{}{}
\mathdisp {\begin{pmatrix} 3 & 1 \\ 1 & -5 \end{pmatrix}} { }
gegebenen \definitionsverweis {symmetrischen Bilinearform}{}{.}

}
{} {}





\inputaufgabe
{}
{

Bestimme den \definitionsverweis {Typ}{}{} der durch die \definitionsverweis {Gramsche Matrix}{}{}
\mathdisp {\begin{pmatrix} 2 & 4 & 1 \\ 4 & -2 & 3 \\1 & 3 & 5 \end{pmatrix}} { }
gegebenen \definitionsverweis {symmetrischen Bilinearform}{}{.}

}
{} {}




\inputaufgabegibtloesung
{}
{

Bestimme mit dem Eigenwertkriterium den \definitionsverweis {Typ}{}{} der durch die Matrix
\mathdisp {\begin{pmatrix} 7 & 0 & 0 \\ 0 & 5 & -4 \\0 & -4 & 2 \end{pmatrix}} { }
gegebenen \definitionsverweis {symmetrischen Bilinearform}{}{.}

}
{} {}




\inputaufgabegibtloesung
{}
{

Es sei
\mathl{\left\langle - , - \right\rangle}{} eine \definitionsverweis {Bilinearform}{}{} auf einem zweidimensionalen reellen \definitionsverweis {Vektorraum}{}{,} die bezüglich einer Basis durch die \definitionsverweis {Gramsche Matrix}{}{}
\mathdisp {\begin{pmatrix} 0 & b \\ b & c \end{pmatrix}} { }
beschrieben werde. Bestimme den \definitionsverweis {Typ}{}{} der Form in Abhängigkeit von
\mathl{b,c}{.}

}
{} {}






\zwischenueberschrift{Aufgaben zum Abgeben}




\inputaufgabe
{4}
{

Untersuche, welche der folgenden Abbildungen \maabb {\varphi} { \R^2 \times \R^2 } { \R } {} \definitionsverweis {bilinear}{}{} sind. Wenn ja, so untersuche die jeweilige Abbildung auch auf die Eigenschaften \definitionsverweis {alternierend}{}{} und \definitionsverweis {symmetrisch}{}{.} \aufzaehlungdrei{
\mathl{\varphi(x,y):= x_1-y_1}{.} }{
\mathl{\varphi(x,y):= x_1y_1-x_2y_2}{.} }{
\mathl{\varphi(x,y):= 2x_1y_2-2x_2y_1}{.} }

}
{} {}




\inputaufgabe
{4}
{

Es sei
\mathl{\Phi}{} eine \definitionsverweis {Bilinearform}{}{} auf einem $K$-\definitionsverweis {Vektorraum}{}{} $V$. Zeige, dass für Vektoren
\mavergleichskette
{\vergleichskette
{v_1 , \ldots , v_r,w_1 , \ldots , w_s }
{ \in }{V }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} und Skalare
\mavergleichskette
{\vergleichskette
{ a_1 , \ldots , a_r,b_1 , \ldots , b_s }
{ \in }{ K }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} die Gleichheit
\mavergleichskettedisp
{\vergleichskette
{ \Phi( a_1 v_1 + \cdots + a_r v_r, b_1w_1 + \cdots + b_sw_s) }
{ =} { \sum_{ 1 \leq i \leq r, 1 \leq j \leq s} a_ib_j \Phi(v_i,w_j) }
{ } { }
{ } { }
{ } { }
} {}{}{} gilt.

}
{} {}




\inputaufgabe
{3}
{

Bestimme die \definitionsverweis {Gramsche Matrix}{}{} des \definitionsverweis {Standardskalarproduktes}{}{} im $\R^3$ bezüglich der \definitionsverweis {Basis}{}{} $\begin{pmatrix} 1 \\2\\ 3 \end{pmatrix},\, \begin{pmatrix} 2 \\4\\ 5 \end{pmatrix}$ und $\begin{pmatrix} 0 \\1\\ 5 \end{pmatrix}$.

}
{} {}




\inputaufgabe
{2}
{

Es sei $V$ ein \definitionsverweis {endlichdimensionaler}{}{} \definitionsverweis {reeller Vektorraum}{}{} mit einer \definitionsverweis {symmetrischen}{}{} \definitionsverweis {Bilinearform}{}{}
\mathl{\left\langle - , - \right\rangle}{} vom \definitionsverweis {Typ}{}{}
\mathl{(p,q)}{.} Zeige, dass die negierte Form
\mathl{- \left\langle - , - \right\rangle}{} den Typ
\mathl{(q,p)}{} besitzt.

}
{} {}




\inputaufgabe
{2}
{

Bestimme den \definitionsverweis {Typ}{}{} der durch die \definitionsverweis {Gramsche Matrix}{}{}
\mathdisp {\begin{pmatrix} 6 & 7 & -1 \\ 7 & 5 & 6 \\-1 & 6 & -3 \end{pmatrix}} { }
gegebenen \definitionsverweis {symmetrischen Bilinearform}{}{.}

}
{} {}