Kurs:Mathematik für Anwender (Osnabrück 2020-2021)/Teil II/Arbeitsblatt 56/latex
\setcounter{section}{56}
\zwischenueberschrift{Übungsaufgaben}
Es sei
\maabbeledisp {f} { L} { M
} {x} {f(x)
} {,}
eine
\definitionsverweis {Abbildung}{}{}
zwischen den
\definitionsverweis {metrischen Räumen}{}{}
\mathkor {} {L} {und} {M} {.} Die Abbildung heißt \definitionswort {Lipschitz-stetig}{,} wenn es eine
\definitionsverweis {reelle Zahl}{}{}
\mavergleichskette
{\vergleichskette
{ c
}
{ \geq }{ 0
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}
mit
\mavergleichskettedisp
{\vergleichskette
{ d { \left( f(x), f(y) \right) }
}
{ \leq} { c \cdot d { \left( x, y \right) }
}
{ } {
}
{ } {
}
{ } {
}
}
{}{}{}
für alle
\mavergleichskette
{\vergleichskette
{x,y
}
{ \in }{ L
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}
gibt.
\inputaufgabe
{}
{
Zeige, dass die \definitionsverweis {Betragsfunktion}{}{} \maabbeledisp {} {\R} {\R } {x} { \betrag { x } } {,} \definitionsverweis {Lipschitz-stetig}{}{} mit \definitionsverweis {Lipschitz-Konstante}{}{} $1$ ist.
}
{} {}
\inputaufgabe
{}
{
Zeige, dass eine \definitionsverweis {lineare Abbildung}{}{} \maabb {\varphi} {V} {W } {} zwischen \definitionsverweis {euklidischen Vektorräumen}{}{} \definitionsverweis {Lipschitz-stetig}{}{} ist.
}
{} {}
\inputaufgabe
{}
{
Es sei $V$ ein
\definitionsverweis {endlichdimensionaler}{}{}
\definitionsverweis {reeller Vektorraum}{}{,}
\mavergleichskette
{\vergleichskette
{I
}
{ \subseteq }{\R
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}
ein
\definitionsverweis {reelles Intervall}{}{,}
\mavergleichskette
{\vergleichskette
{U
}
{ \subseteq }{V
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}
eine
\definitionsverweis {offene Menge}{}{}
und
\maabbeledisp {f} {I\times U} {V
} {(t,v)} {f(t,v)
} {,}
ein
\definitionsverweis {Vektorfeld}{}{}
auf $U$. Zeige die folgenden Aussagen.
a) Wenn $f$ \zusatzklammer {als Abbildung} {} {} \definitionsverweis {Lipschitz-stetig}{}{} ist, so genügt das Vektorfeld einer \definitionsverweis {Lipschitz-Bedingung}{}{.}
b) Wenn das Vektorfeld einer Lipschitz-Bedingung genügt, so sind für jedes feste
\mathl{t \in I}{} die Abbildungen
\maabbeledisp {} {U} {V
} {v} {f(t,v)
} {,}
Lipschitz-stetig.
c) Man gebe Beispiele, die zeigen, dass die Implikationen aus a) und b) nicht umkehrbar sind.
}
{} {}
\inputaufgabe
{}
{
Es sei
\maabbdisp {f} {I \times U} {V
} {}
ein
\definitionsverweis {stetiges}{}{}
\definitionsverweis {Vektorfeld}{}{,}
das auf einer
\definitionsverweis {offenen Menge}{}{}
\mathl{U \subseteq V}{} eines
\definitionsverweis {endlichdimensionalen}{}{}
\definitionsverweis {reellen Vektorraums}{}{}
definiert sei und
\definitionsverweis {lokal einer Lipschitz-Bedingung}{}{}
genüge. Es sei
\mathl{W \subseteq V}{} ein
\definitionsverweis {Untervektorraum}{}{}
mit der Eigenschaft, dass für alle
\mathl{t \in I}{} und
\mathl{P \in U \cap W}{} die Beziehung
\mathl{f(t,P) \in W}{} gilt. Zeige, dass eine
\definitionsverweis {Lösung des Anfangswertproblems}{}{}
\mathdisp {v'=f(t,v) \text{ mit } v(t_0)=w \in U \cap W} { }
ganz in $W$ verläuft.
}
{} {}
\inputaufgabe
{}
{
Löse das Anfangswertproblem
\mathdisp {y^{\prime} = y+1 \text{ mit } y(0)=0} { . }
mit der
\definitionsverweis {Picard-Lindelöf-Iteration}{}{.}
}
{} {}
\inputaufgabegibtloesung
{}
{
Bestimme für das Anfangswertproblem
\mathdisp {y^{\prime} = y \text{ mit } y(0)=1} { }
explizite Formeln für die
\definitionsverweis {Picard-Lindelöf-Iterationen}{}{.}
}
{} {}
\inputaufgabe
{}
{
Bestimme in Beispiel 56.7 eine explizite Formel für die Iterationen $\varphi_n$.
}
{} {}
\inputaufgabegibtloesung
{}
{
Bestimme die ersten drei Iterationen in der
\definitionsverweis {Picard-Lindelöf-Iteration}{}{}
für die
\definitionsverweis {gewöhnliche Differentialgleichung}{}{}
\mavergleichskettedisp
{\vergleichskette
{y'
}
{ =} {y^2+t+yt^2
}
{ } {
}
{ } {
}
{ } {
}
}
{}{}{}
mit der Anfangsbedingung
\mathl{y(0)=0}{.}
}
{} {}
\inputaufgabegibtloesung
{}
{
Bestimme die ersten drei Iterationen in der
\definitionsverweis {Picard-Lindelöf-Iteration}{}{}
für die
\definitionsverweis {lineare gewöhnliche Differentialgleichung mit konstanten Koeffizienten}{}{}
\mavergleichskettedisp
{\vergleichskette
{ \begin{pmatrix} x \\y \end{pmatrix}'
}
{ =} { \begin{pmatrix} -1 & 3 \\ 2 & 4 \end{pmatrix} \begin{pmatrix} x \\y \end{pmatrix}
}
{ } {
}
{ } {
}
{ } {
}
}
{}{}{}
mit der Anfangsbedingung
\mathkor {} {x(0)=2} {und} {y(0)=-7} {.}
}
{} {}
\inputaufgabegibtloesung
{}
{
Bestimme die ersten drei Iterationen in der
\definitionsverweis {Picard-Lindelöf-Iteration}{}{}
für die
\definitionsverweis {lineare gewöhnliche Differentialgleichung}{}{}
\mavergleichskettedisp
{\vergleichskette
{ \begin{pmatrix} x \\y \end{pmatrix}'
}
{ =} { \begin{pmatrix} t & 3 \\ 1 & t \end{pmatrix} \begin{pmatrix} x \\y \end{pmatrix}
}
{ } {
}
{ } {
}
{ } {
}
}
{}{}{}
mit der Anfangsbedingung
\mathkor {} {x(0)= 0} {und} {y(0)=1} {.}
}
{} {}
\inputaufgabe
{}
{
Bestimme die ersten vier Iterationen in der
\definitionsverweis {Picard-Lindelöf-Iteration}{}{}
für die
\definitionsverweis {lineare gewöhnliche Differentialgleichung}{}{}
\mavergleichskettedisp
{\vergleichskette
{ \begin{pmatrix} x \\y \end{pmatrix}'
}
{ =} { \begin{pmatrix} -t & t^2 \\ 2 & t \end{pmatrix} \begin{pmatrix} x \\y \end{pmatrix}
}
{ } {
}
{ } {
}
{ } {
}
}
{}{}{}
mit der Anfangsbedingung
\mathkor {} {x(0)=1} {und} {y(0)=-1} {.}
}
{} {}
\zwischenueberschrift{Aufgaben zum Abgeben}
\inputaufgabe
{4}
{
Wir betrachten das
\definitionsverweis {Vektorfeld}{}{}
\maabbeledisp {f} {\R \times \R^2} {\R^2
} {(t,u,v)} {(t^2uv,u^2-tv^2)
} {.}
Bestimme für jedes
\mavergleichskette
{\vergleichskette
{ t
}
{ \in }{ \R
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}
die nicht-\definitionsverweis {regulären}{}{}
Punkte des Vektorfeldes
\maabbeledisp {f_t} {\R^2} {\R^2
} {(u,v)} {(t^2uv,u^2-tv^2)
} {.}
Welche Ortspunkte sind zu keinem Zeitpunkt regulär?
}
{} {}
\inputaufgabe
{4}
{
Löse das
\definitionsverweis {Anfangswertproblem}{}{}
\mathdisp {v'=f(t,v) \text{ und } v(1)= (3,2,6)} { }
zum
\definitionsverweis {ortsunabhängigen Vektorfeld}{}{}
\maabbeledisp {f} {\R \times \R^3} {\R^3
} {(t,x,y,z)} { t^3(3,1,4)-e^{-2t}(2,-1,7)+(t-t^2 e^t )(0,4,5)+(2,2,2)
} {.}
}
{} {}
\inputaufgabe
{3}
{
Bestimme die ersten vier Iterationen in der
\definitionsverweis {Picard-Lindelöf-Iteration}{}{}
für die
\definitionsverweis {lineare gewöhnliche Differentialgleichung mit konstanten Koeffizienten}{}{}
\mavergleichskettedisp
{\vergleichskette
{ \begin{pmatrix} x \\y \end{pmatrix}'
}
{ =} { \begin{pmatrix} 2 & 1 \\ 0 & 3 \end{pmatrix} \begin{pmatrix} x \\y \end{pmatrix}
}
{ } {
}
{ } {
}
{ } {
}
}
{}{}{}
mit der Anfangsbedingung
\mathkor {} {x(0)=4} {und} {y(0)=5} {.}
}
{} {}
\inputaufgabe
{5}
{
Bestimme die ersten vier Iterationen in der
\definitionsverweis {Picard-Lindelöf-Iteration}{}{}
für die
\definitionsverweis {lineare gewöhnliche Differentialgleichung}{}{}
\mavergleichskettedisp
{\vergleichskette
{ \begin{pmatrix} x \\y \end{pmatrix}'
}
{ =} { \begin{pmatrix} t^2 & -1 \\ t & t^3 \end{pmatrix} \begin{pmatrix} x \\y \end{pmatrix}
}
{ } {
}
{ } {
}
{ } {
}
}
{}{}{}
mit der Anfangsbedingung
\mathkor {} {x(0)=1} {und} {y(0)=1} {.}
}
{} {}
\inputaufgabe
{4}
{
Wir betrachten das \definitionsverweis {zeitunabhängige Vektorfeld}{}{} \maabbeledisp {f} {\R} {\R } {v} {3 v^{2/3} = 3 \sqrt[3]{v^2} } {.} Zeige direkt, dass dieses \definitionsverweis {Vektorfeld}{}{} \definitionsverweis {stetig}{}{} ist, aber nicht \definitionsverweis {lokal einer Lipschitz-Bedingung}{}{} genügt.
}
{} {}