Zum Inhalt springen

Kurs:Mathematik für Anwender I/Teiltest 1/Klausur

Aus Wikiversity

Aufgabe * (4 Punkte)

Definiere die folgenden (kursiv gedruckten) Begriffe.

  1. Der Betrag einer komplexen Zahl .
  2. Ein Untervektorraum in einem -Vektorraum .
  3. Eine lineare Abbildung

    zwischen den -Vektorräumen und .

  4. Der Kern einer linearen Abbildung

    zwischen zwei -Vektorräumen und .

  5. Die geometrische Reihe für .
  6. Die Stetigkeit einer Abbildung

    in einem Punkt .

  7. Die Differenzierbarkeit einer Abbildung
    in einem Punkt

    .

  8. Das Taylor-Polynom vom Grad zu einer -mal differenzierbaren Funktion

    in einem Punkt .



Aufgabe * (4 Punkte)

Formuliere die folgenden Sätze.

  1. Der Binomische Lehrsatz.
  2. Der Multiplikationssatz für Determinanten.
  3. Das Quotientenkriterium für Reihen.
  4. Das Folgenkriterium für die Stetigkeit einer Funktion
    in einem Punkt .



Aufgabe * (4 Punkte)

Zeige, dass für jede natürliche Zahl die Abschätzung

gilt.



Aufgabe * (2 (0.5+1+0.5) Punkte)

a) Berechne

b) Bestimme das inverse Element zu

c) Welchen Abstand hat aus Teil (b) zum Nullpunkt?



Aufgabe * (4 Punkte)

Im seien die beiden Untervektorräume

und

gegeben. Bestimme eine Basis für .



Aufgabe * (4 (1+1+2) Punkte)

Die Zeitungen und verkaufen Zeitungsabos und konkurrieren dabei um einen lokalen Markt mit potentiellen Lesern. Dabei sind innerhalb eines Jahres folgende Kundenbewegungen zu beobachten.

  1. Die Abonnenten von bleiben zu bei , wechseln zu , wechseln zu und werden Nichtleser.
  2. Die Abonnenten von bleiben zu bei , wechseln zu , wechseln zu und werden Nichtleser.
  3. Die Abonnenten von bleiben zu bei , niemand wechselt zu , wechseln zu und werden Nichtleser.
  4. Von den Nichtlesern entscheiden sich je für ein Abonnement von oder , die übrigen bleiben Nichtleser.

a) Erstelle die Matrix, die die Kundenbewegungen innerhalb eines Jahres beschreibt.

b) In einem bestimmten Jahr haben alle drei Zeitungen je Abonnenten und es gibt Nichtleser. Wie sieht die Verteilung ein Jahr später aus?

c) Die drei Zeitungen expandieren in eine zweite Stadt, wo es bislang überhaupt keine Zeitungen gibt, aber ebenfalls potentielle Leser. Wie viele Leser haben dort die einzelnen Zeitungen (und wie viele Nichtleser gibt es noch) nach drei Jahren, wenn dort die gleichen Kundenbewegungen zu beobachten sind?



Aufgabe * (7 Punkte)

Es sei ein Körper und ein endlichdimensionaler -Vektorraum. Es sei ein Untervektorraum. Zeige, dass es einen -Vektorraum und eine surjektive -lineare Abbildung

derart gibt, dass ist.



Aufgabe * (3 Punkte)

Bestimme die inverse Matrix zu



Aufgabe * (4 Punkte)

Bestimme die komplexen Zahlen , für die die Matrix

nicht invertierbar ist.



Aufgabe * (3 Punkte)

Führe die ersten drei Schritte des babylonischen Wurzelziehens zu mit dem Startwert durch (es sollen also die Approximationen für berechnet werden; diese Zahlen müssen als gekürzte Brüche angegeben werden).



Aufgabe * (4 Punkte)

Untersuche, ob die Reihe

konvergiert oder divergiert.



Aufgabe * (7 Punkte)

Beweise das Folgenkriterium für die Stetigkeit einer Funktion in einem Punkt .



Aufgabe * (4 Punkte)

Berechne das Cauchy-Produkt bis zur vierten Potenz der geometrischen Reihe mit der Exponentialreihe.



Aufgabe * (2 (1+1) Punkte)

Wir betrachten die Funktion

a) Bestimme die Ableitung .

b) Bestimme die zweite Ableitung .



Aufgabe * (3 Punkte)

Wir betrachten die Funktion

Bestimme die Tangenten an , die lineare Funktionen sind (die also durch den Nullpunkt verlaufen).



Aufgabe * (5 Punkte)

Wir betrachten die Funktion

Bestimme die Punkte , in denen differenzierbar ist.


Zur pdf-Version dieser Testklausur


Zur pdf-Version dieser Testklausur mit Lösungen