Kurs:Vorkurs Mathematik (Osnabrück 2013)/Arbeitsblatt 4/latex

Aus Wikiversity
Zur Navigation springen Zur Suche springen

\setcounter{section}{4}






\zwischenueberschrift{Übungsaufgaben}

Die beiden ersten Aufgaben sollen dazu anregen, über die Güte von Dezimalbruchentwicklungen zu diskutieren.


\inputaufgabe
{}
{

Stimmen die beiden reellen Zahlen
\mathdisp {{ \frac{ \pi \sqrt{163} }{ 3 } } \text{ und } \ln 640320} { }
überein?

}
{} {}




\inputaufgabe
{}
{

Stimmen die beiden reellen Zahlen
\mathdisp {{\sqrt{ 5 } } + {\sqrt{ 22+2 {\sqrt{ 5 } } } } \text{ und } {\sqrt{ 11 +2 {\sqrt{ 29 } } } } + {\sqrt{ 16-2 {\sqrt{ 29 } } +2 {\sqrt{ 55-10 {\sqrt{ 29 } } } } } }} { }
überein?

}
{} {}




\inputaufgabe
{}
{

Berechne von Hand die Approximationen $x_1,x_2,x_3,x_4$ im Heron-Verfahren für die Quadratwurzel von $5$ zum Startwert $x_0=2$.

}
{} {}




\inputaufgabegibtloesung
{}
{

Führe die ersten drei Schritte des babylonischen Wurzelziehens zu
\mavergleichskette
{\vergleichskette
{b }
{ = }{7 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} mit dem Startwert
\mavergleichskette
{\vergleichskette
{x_0 }
{ = }{3 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} durch \zusatzklammer {es sollen also die Approximationen
\mathl{x_1,x_2,x_3}{} für $\sqrt{7}$ berechnet werden; diese Zahlen müssen als gekürzte Brüche angegeben werden} {} {.}

}
{} {}




\inputaufgabe
{}
{

Sei $a$ eine reelle Zahl. Zeige, dass die Gleichung $x^2=a$ höchstens zwei Lösungen in $\R$ besitzt.

}
{} {}




\inputaufgabegibtloesung
{}
{

Formuliere und beweise die \stichwort {Lösungsformel für eine quadratische Gleichung} {}
\mavergleichskettedisp
{\vergleichskette
{ ax^2+bx+c }
{ =} {0 }
{ } { }
{ } { }
{ } { }
} {}{}{} mit
\mathbed {a,b,c \in \R} {}
{a \neq 0} {}
{} {} {} {.}

}
{} {}




\inputaufgabe
{}
{

Es sei
\mathl{{ \left( x_n \right) }_{n \in \N }}{} eine \definitionsverweis {reelle Folge}{}{.} Zeige, dass die Folge genau dann gegen $x$ \definitionsverweis {konvergiert}{}{,} wenn es für jedes
\mathl{k \in \N_+}{} ein
\mathl{n_0 \in \N}{} derart gibt, dass für alle
\mathl{n \geq n_0}{} die Abschätzung
\mavergleichskette
{\vergleichskette
{ \betrag { x_n-x } }
{ \leq }{ { \frac{ 1 }{ k } } }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} gilt.

}
{} {}




\inputaufgabe
{}
{

Untersuche die durch
\mavergleichskettedisp
{\vergleichskette
{x_n }
{ =} { { \frac{ 1 }{ n^2 } } }
{ } { }
{ } { }
{ } { }
} {}{}{} gegebene \definitionsverweis {Folge}{}{} \zusatzklammer {\mathlk{n \geq 1}{}} {} {} auf \definitionsverweis {Konvergenz}{}{.}

}
{} {}




\inputaufgabe
{}
{

Untersuche die durch
\mavergleichskettedisp
{\vergleichskette
{x_n }
{ =} { { \frac{ 1 }{ 10^n } } }
{ } { }
{ } { }
{ } { }
} {}{}{} gegebene \definitionsverweis {Folge}{}{} auf \definitionsverweis {Konvergenz}{}{.}

}
{} {}




\inputaufgabegibtloesung
{}
{

Es seien \mathkor {} {{ \left( x_n \right) }_{n \in \N }} {und} {{ \left( y_n \right) }_{n \in \N }} {} zwei \definitionsverweis {konvergente}{}{} \definitionsverweis {reelle Folgen}{}{} mit
\mathl{x_n \geq y_n}{} für alle
\mathl{n \in \N}{.} Zeige, dass dann $\lim_{n \rightarrow \infty} x_n \geq \lim_{n \rightarrow \infty} y_n$ gilt.

}
{} {}

Die folgende Aussage nennt man auch das \stichwort {Quetschkriterium für Folgen} {.}


\inputaufgabegibtloesung
{}
{

Es seien \mathkor {} {{ \left( x_n \right) }_{n \in \N }, \, { \left( y_n \right) }_{n \in \N }} {und} {{ \left( z_n \right) }_{n \in \N }} {} drei \definitionsverweis {reelle Folgen}{}{.} Es gelte $x_n \leq y_n \leq z_n \text{ für alle } n \in \N$ und \mathkor {} {{ \left( x_n \right) }_{n \in \N }} {und} {{ \left( z_n \right) }_{n \in \N }} {} \definitionsverweis {konvergieren}{}{} beide gegen den gleichen Grenzwert $a$. Zeige, dass dann auch ${ \left( y_n \right) }_{n \in \N }$ gegen diesen Grenzwert $a$ konvergiert.

}
{} {}

Für die folgende Aufgabe können Sie bekannte Eigenschaften der Sinusfunktion verwenden.


\inputaufgabegibtloesung
{}
{

Bestimme den Grenzwert der Folge
\mathdisp {\frac{ \sin n }{n} , \, n \in \N_+} { . }

}
{} {}




\inputaufgabe
{}
{

Beweise die Aussagen (1), (3) und (5) von Lemma 4.7.

}
{} {}




\inputaufgabe
{}
{

Sei
\mathl{k \in \N_+}{.} Zeige, dass die Folge
\mathl{\left( { \frac{ 1 }{ n^k } } \right)_{ n \in \N }}{} gegen $0$ \definitionsverweis {konvergiert}{}{.}

}
{} {}




\inputaufgabe
{}
{

Es sei ${ \left( x_n \right) }_{n \in \N }$ eine \definitionsverweis {konvergente Folge}{}{} reeller Zahlen mit \definitionsverweis {Grenzwert}{}{} $x$. Zeige, dass dann auch die Folge
\mathdisp {{ \left( \betrag { x_n } \right) }_{ n \in \N }} { }
konvergiert, und zwar gegen $\betrag { x }$.

}
{} {}

In den beiden folgenden Aufgaben geht es um die Folge der Fibonacci-Zahlen.

Die Folge der \definitionswort {Fibonacci-Zahlen}{} $f_n$ ist rekursiv definiert durch
\mathdisp {f_1 \defeq 1 \, , f_2 \defeq 1 \text{ und } f_{n+2} \defeq f_{n+1} +f_{n}} { . }





\inputaufgabegibtloesung
{}
{

Beweise durch Induktion die \stichwort {Simpson-Formel} {} oder Simpson-Identität für die \definitionsverweis {Fibonacci-Zahlen}{}{} $f_n$. Sie besagt \zusatzklammer {für \mathlk{n \geq 2}{}} {} {}
\mavergleichskettedisp
{\vergleichskette
{ f_{n+1} f_{n-1} - f_n^2 }
{ =} {(-1)^n }
{ } { }
{ } { }
{ } { }
} {}{}{.}

}
{} {}




\inputaufgabe
{}
{

Beweise durch Induktion die \stichwort {Binet-Formel} {} für die \definitionsverweis {Fibonacci-Zahlen}{}{.} Diese besagt, dass
\mathdisp {f_n = \frac{ { \left( \frac{1+\sqrt{5} }{2} \right) }^n - { \left( \frac{1-\sqrt{5} }{2} \right) }^n}{\sqrt{5} }} { }
gilt \zusatzklammer {\mathlk{n \geq 1}{}} {} {.}

}
{} {}




\inputaufgabe
{}
{

Untersuche die durch
\mathdisp {x_n = { \frac{ 1 }{ \sqrt{n} } }} { }
gegebene Folge (\mathlk{n \geq 1}{}) auf \definitionsverweis {Konvergenz}{}{.}

}
{} {}




\inputaufgabe
{}
{

Bestimme den \definitionsverweis {Grenzwert}{}{} der durch
\mavergleichskettedisp
{\vergleichskette
{x_n }
{ =} { { \frac{ 7n^3-3n^2+2n-11 }{ 13n^3-5n+4 } } }
{ } { }
{ } { }
{ } { }
} {}{}{} definierten \definitionsverweis {Folge}{}{.}

}
{} {}

Für die folgende Aufgabe ist Aufgabe 1.5 hilfreich.


\inputaufgabe
{}
{

Zeige, dass die \definitionsverweis {reelle Folge}{}{}
\mathdisp {\left( \frac{n}{2^n} \right)_{ n \in \N }} { }
gegen $0$ \definitionsverweis {konvergiert}{}{.}

}
{} {}




\inputaufgabe
{}
{

Bestimme den \definitionsverweis {Grenzwert}{}{} der durch
\mathdisp {x_n = { \frac{ 2n+5 \sqrt{n} +7 }{ -5 n+3 \sqrt{n} -4 } }} { }
definierten \definitionsverweis {reellen Folge}{}{.}

}
{} {}




\inputaufgabe
{}
{

Man gebe Beispiele für \definitionsverweis {konvergente}{}{} \definitionsverweis {reelle Folgen}{}{} \mathkor {} {{ \left( x_n \right) }_{n \in \N }} {und} {{ \left( y_n \right) }_{n \in \N }} {} mit
\mathbed {x_n \neq 0} {}
{n \in \N} {}
{} {} {} {,} und mit $\lim_{n \rightarrow \infty} x_n=0$ derart, dass die Folge
\mathdisp {\left( \frac{y_n}{x_n} \right)_{ n \in \N }} { }
\aufzaehlungdrei{gegen $0$ konvergiert, }{gegen $1$ konvergiert, }{divergiert.}

}
{} {}

<< | Kurs:Vorkurs Mathematik (Osnabrück 2013) | >>

PDF-Version dieses Arbeitsblattes

Zur Vorlesung (PDF)