Lineare Abbildung/Eigenwert 1 und -1/Bemerkung

Aus Wikiversity
Zur Navigation springen Zur Suche springen

Neben dem Eigenraum zu , der der Kern der linearen Abbildung ist, sind die Eigenwerte und besonders interessant. Der Eigenraum zu besteht aus allen Vektoren, die auf sich selbst abgebildet werden. Auf diesem Untervektorraum wirkt also die Abbildung wie die Identität, man nennt ihn den Fixraum. Der Eigenraum zu besteht aus allen Vektoren, die auf ihr Negatives abgebildet werden. Auf diesem Untervektorraum wirkt die Abbildung wie eine Punktspiegelung.