Beweis
Die Äquivalenz der ersten drei Formulierungen folgt direkt aus
Fakt.
Es sei (1) erfüllt und eine offene Menge
gegeben mit dem Urbild
.
Sei
ein Punkt mit dem Bildpunkt
.
Da offen ist, gibt es nach Definition ein
mit
.
Nach (2) gibt es ein
mit
.
Daher ist
-
und wir haben eine offene Ballumgebung von innerhalb des Urbilds gefunden. Deshalb ist offen.
Es sei (4) erfüllt und
mit
und
vorgegeben. Da der offene Ball offen ist, ist wegen (4) auch das Urbild offen. Da zu dieser Menge gehört, gibt es ein
mit
-
sodass (1) erfüllt ist.