Zum Inhalt springen

Noetherscher Integritätsbereich/Faktoriell/Primideale der Höhe 1/Fakt/Beweis

Aus Wikiversity
Beweis

Sei zuerst faktoriell und ein Primideal der Höhe . Dieses ist nicht das Nullideal und somit gibt es ein Element . Dieses besitzt eine Faktorzerlegung

in Primelemente und wegen der Primidealeigenschaft gibt es ein Primelement mit . Dann liegt die Primidealkette

vor, und wegen der Höhenbedingung stimmen die beiden Ideale überein.

Sei umgekehrt jedes Primideal der Höhe ein Primhauptideal. Wegen Fakt und Fakt ist lediglich zu zeigen, dass jedes irreduzible Element ein Primelement ist. Sei also irreduzibel und sei ein minimales Primoberideal. Nach dem Krullschen Hauptidealsatz besitzt die Höhe und nach Voraussetzung ist

mit einem Primelement . Also ist

und muss eine Einheit sein. Somit ist selbst prim.