Peano-Halbring/Division mit Rest/Eindeutigkeit/Aufgabe/Lösung

Aus Wikiversity
Zur Navigation springen Zur Suche springen

Es gelte

mit

Ohne Einschränkung können wir annehmen. Dann ist

mit einem und somit ist

Aufgrund der Abziehregel ergibt sich

Bei ist nach Fakt. Dann ergibt sich der Widerspruch

wegen der Verträglichkeit der Ordnung mit der Multiplikation. (siehe Fakt). Also ist und damit und

.
Zur gelösten Aufgabe