Permutationsgruppe S3/Untergruppen und Normalteiler/Beispiel
Erscheinungsbild
Wir betrachten die Permutationsgruppe zu einer dreielementigen Menge, d.h. besteht aus den bijektiven Abbildungen der Menge in sich. Die triviale Gruppe und die ganze Gruppe sind Normalteiler. Die Teilmenge , wobei die Elemente und vertauscht und unverändert lässt, ist eine Untergruppe. Sie ist aber kein Normalteiler. Um dies zu zeigen, sei die Bijektion, die fest lässt und und vertauscht. Dieses ist zu sich selbst invers. Die Konjugation ist dann die Abbildung, die auf , auf und auf schickt, und diese Bijektion gehört nicht zu .