Polynomring/Eine Variable/Kommutativer Ring/Grad/Einführung/Textabschnitt
Erscheinungsbild
Der Grad eines von verschiedenen Polynoms
mit ist .
Wenn der Leitkoeffizient ist, so nennt man das Polynom normiert. Dem Nullpolynom wird im Allgemeinen kein Grad zugewiesen; manchmal sind gewisse Gleichungen oder Bedingungen aber auch so zu verstehen, dass dem Nullpolynom jeder Grad zugewiesen wird. Polynome vom Grad heißen konstante Polynome, Polynome vom Grad heißen affin-lineare Polynome und Polynome vom Grad heißen quadratische Polynome.
Es sei ein kommutativer Ring und sei der Polynomring über . Dann gelten für den Grad folgende Aussagen.
- Wenn ein Integritätsbereich ist, so gilt in (2) die Gleichheit.
Beweis
Siehe
Aufgabe.