Projektiver Raum/Hyperfläche/Kanonische Garbe/Grobe Klassifikation/Bemerkung
Fakt erlaubt eine grobe Klassifikation von glatten Hyperflächen
im projektiven Raum, je nachdem, ob in der Twist negativ, gleich oder positiv ist. Bei , also Kurven in der projektiven Ebene, liegt bei eine projektive Gerade vor, bei , wenn die kanonische Garbe trivial ist, eine elliptische Kurve und bei eine Kurve vom allgemeinen Typ. Bei , also Flächen im projektiven Raum, liegt bei eine projektive Ebene vor, bei eine zu isomorphe Fläche und bei eine Fläche, die isomorph ist zu einer projektiven Ebene, auf der man sechs Punkte aufgeblasen hat. Jedenfalls hat man bei eine sogenannte rationale Fläche, deren Funktionenkörper gleich dem rationalen Funktionenkörper in zwei Variablen ist. Bei , wenn die kanonische Garbe trivial ist, liegt eine sogenannte -Fläche vor. Bei hat man eine Fläche vom allgemeinen Typ.