Quadratrestgruppe/Q/Eindeutiger Vertreter/Aufgabe
Erscheinungsbild
Es sei die (multiplikative) Untergruppe der Quadrate innerhalb der positiven rationalen Zahlen und es sei die zugehörige Äquivalenzrelation auf . Zeige, dass jede Äquivalenzklasse einen eindeutigen Repräsentanten besitzt, der durch eine natürliche Zahl gegeben ist, in deren Primfaktorzerlegung jeder Primfaktor einfach ist (die erfülle diese Eigenschaft).