Reelle Funktion/Ableitung/Monotonieverhalten/Fakt/Beweis/Aufgabe/Lösung
Erscheinungsbild
(1). Es genügt, die Aussagen für wachsende Funktionen zu beweisen. Wenn wachsend ist, und ist, so gilt für den Differenzenquotienten
für jedes mit
.
Diese Abschätzung gilt dann auch für den Grenzwert für , und dieser ist .
Es sei umgekehrt die Ableitung .
Nehmen wir an, dass es zwei Punkte
in mit
gibt. Aufgrund des
Mittelwertsatzes
gibt es dann ein mit
mit
(2). Es sei nun mit nur endlich vielen Ausnahmen. Angenommen es wäre für zwei Punkte . Da nach dem ersten Teil wachsend ist, ist auf dem Intervall konstant. Somit ist
auf diesem gesamten Intervall, ein Widerspruch dazu, dass nur endlich viele Nullstellen besitzt.