Satz über implizite Abbildungen/R/Fakt
Erscheinungsbild
Der Satz über implizite Abbildungen
Es sei offen und sei
eine stetig differenzierbare Abbildung. Es sei und es sei die Faser durch . Das totale Differential sei surjektiv.
Dann gibt es eine offene Menge , , eine offene Menge und eine stetig differenzierbare Abbildung
derart, dass ist und eine Bijektion
induziert.
Die Abbildung ist in jedem Punkt regulär und für das totale Differential von gilt