Satz über implizite Funktionen/Ebene Kurven/Bemerkung

Aus Wikiversity
Zur Navigation springen Zur Suche springen

Sei oder und . Bei , wenn also ein regulärer Punkt der Funktion ist (oder, äquivalent, ein glatter Punkt von ), so sichert der Satz über implizite Funktionen, dass sich die Kurve in einer (metrischen) Umgebung des Punktes als Graph einer differenzierbaren Funktion darstellen lässt.