Zum Inhalt springen

Strukturen/Isomorphismus/Bijektion/Bemerkung

Aus Wikiversity

Es sei ein erststufiges Symbolalphabet und und seien -Strukturen. Eine bijektive Abbildung

die ein -Homomorphismus ist, muss kein -Isomorphismus sein, da die Umkehrabbildung im Allgemeinen kein Homomorphismus sein muss. Deshalb fordert man in der Definition eines Isomorphismus explizit die Homomorphie der Umkehrabbildung. Wenn allerdings das Symbolalphabet keine Relationssymbole enthält, so ist die Umkehrabbildung automatisch ein Homomorphismus, siehe Aufgabe. Ein Extremfall liegt, vor, wenn ein Relationssymbol in als die leere Relation interpretiert wird. Dann verhält sich bezüglich dieses Relationssymbols -homomorph, unabhängig von der Interpretation von auf .