Zum Inhalt springen

Topologie/Theorie der Fundamentalgruppe/Seifert-van Kampen/Orientierbare Flächen/Beispiel

Aus Wikiversity

Es sei ein reguläres -Eck. Identifiziere die erste mit der dritten, die zweite mit der vierten, die fünfte mit der siebten Kante und so weiter, wobei der Endpunkt der ersten mit dem Anfangspunkt der dritten usw. verklebt wird. Das Resultat ist die orientierbare Fläche vom Geschlecht . Das Resultat im Falle sieht so aus:

Die Fundamentalgruppe bestimmt man mit Hilfe des Satzes von Seifert-van Kampen wie schon beim Torus. Es sei und eine kleine offene Kugel um . Dann ist homotopieäquivalent zu , also wegzusammenhängend, und ist zusammenziehbar, also auch wegzusammenhängend. Der Schnitt ist homotopieäquivalent zu , also wieder wegzusammenhängend. Der kanonische Gruppenhomomorphismus

ist also surjektiv. Es seien die durch die Kanten gegebenen Erzeuger von . Der Kern von ist der vom Produkt
erzeugte Normalteiler. Insbesondere ist nicht abelsch für .