ein
Gitter
in ist, wobei die Anzahl der reellen Einbettungen und die Anzahl der Paare von komplexen Einbettungen bezeichnet. Zu jedem von verschiedenen Element
ist in jeder reellen Komponente und in jeder komplexen Komponente von verschieden
(Real- oder Imaginärteil kann aber sein).
Um die Einheitengruppe von zu verstehen, betrachten wir die Abbildung
Man beachte, dass man für die komplexen Einbettungen die Werte
heranzieht. Insgesamt haben wir die Verknüpfung der folgenden Abbildungen
wobei die funktionalen Ausdrücke komponentenweise zu verstehen sind. Da die Einbettungen und der Betrag multiplikativ sind und der Logarithmus die Multiplikation in die Addition überführt, liegt insgesamt ein Gruppenhomomorphismus
vor. Wir sprechen von der logarithmischen Gesamtabbildung und bezeichnen sie mit . Diese ist insbesondere für die Einheitengruppe
wichtig.