Äquivalenzrelation/Abbildung/Gleichwertig/Quadrat und Betrag/Beispiel
Es sei ein Körper. Wir sagen, dass zwei Zahlen „bis (eventuell) auf das Vorzeichen“ übereinstimmen, wenn oder ist. Dafür schreiben wir kurz
Dies ist eine Äquivalenzrelation. Dabei ist die Reflexivität unmittelbar klar, die Symmetrie erhält man, indem man die Gleichung mit multipliziert und ausnutzt. Ähnlich wird auch die Transitivität begründet. Diese Äquivalenzrelation lässt sich auch einfach im Sinne von Fakt beschreiben. Es ist nämlich genau dann, wenn gilt. Dabei ist die Hinrichtung klar. Für die Rückrichtung sei also . Bei ist auch und die Aussage gilt, seien also die Zahlen von verschieden. Durch Division durch erhält man
Wegen und Fakt sind aber und die einzigen Lösungen der Gleichung
in einem Körper, und somit ist und . In einem angeordneten Körper gilt darüber hinaus auch genau dann, wenn gilt. Es gibt also im Allgemeinen mehrere Funktionen, mit denen man eine Äquivalenzrelation erfassen kann.