Zum Inhalt springen

Auflösbare Gruppe/Kurze exakte Sequenz/Kriterium/Fakt/Beweis

Aus Wikiversity
Beweis

Es sei zunächst auflösbar. Nach Fakt ist auflösbar.
Betrachten wir also die Restklassengruppe und fixieren wir eine auflösende Filtrierung

Es sei

der Restklassenhomomorphismus. Wir setzen , dies ist eine Filtrierung von mit Untergruppen. Wir betrachten das kommutative Diagramm

wobei die vertikalen Homomorphismen surjektiv sind. Wir behaupten, dass ein Normalteiler in ist, und ziehen dazu Fakt heran. Es sei also und , die wir durch bzw. repräsentieren. Dann ist und wegen der Normalität von in ist und somit . Wir betrachten die zusammengesetzte surjektive Abbildung

Da zum Kern dieser Abbildung gehört, gibt es aufgrund von Fakt eine surjektive Abbildung

weshalb ebenfalls kommutativ ist.

Es seien nun und auflösbar, sei der Restklassenhomomorphismus und seien

und

auflösende Filtrierungen. Wir ergänzen die Filtrierung von durch die Urbilder zu einer Filtrierung von . Die surjektive Abbildung

besitzt den Kern und zeigt, dass ein Normalteiler in mit kommutativer Restklassengruppe ist.