Cayley-Hamilton/Matrixversion/Fakt/Beweis/Aufgabe/Lösung

Aus Wikiversity
Zur Navigation springen Zur Suche springen

Wir fassen die Matrix als eine Matrix auf, deren Einträge im Körper liegen. Die adjungierte Matrix

liegt ebenfalls in . Die einzelnen Einträge der adjungierten Matrix sind nach Definition Determinanten von -Untermatrizen von . In den Einträgen dieser Matrix kommt die Variable maximal in der ersten Potenz vor, so dass in den Einträgen der adjungierten Matrix die Variable maximal in der -ten Potenz vorkommt. Wir schreiben

mit Matrizen

d.h. man schreibt die einzelnen Einträge als Polynom und fasst dann zu die Koeffizienten zu einer Matrix zusammen. Aufgrund von Fakt gilt

Wir können auch die Matrix links nach den Potenzen von aufteilen, dann ist

Da diese zwei Polynome übereinstimmen, müssen jeweils ihre Koeffizienten übereinstimmen. D.h. wir haben ein System von Gleichungen

Wir multiplizieren diese Gleichungen von links von oben nach unten mit und erhalten das Gleichungssystem

Wenn wir die linke Spalte dieses Gleichungssystem aufsummieren, so erhalten wir gerade . Wenn wir die rechte Seite aufsummieren, so erhalten wir , da jeder Teilsummand einmal positiv und einmal negativ vorkommt. Also ist

.
Zur gelösten Aufgabe