Wir wollen zeigen, dass je zwei Modelle für die Dedekind-Peano-Axiome „isomorph“ sind, dass es also zwischen ihnen eine strukturerhaltende Bijektion gibt. Man stelle sich beispielsweise einerseits das Strichmodell, andererseits das Dezimalzahlmodell der natürlichen Zahlen vor, die beide mit ihren Nullen und ihrer Nachfolgerabbildung die Dedekind-Peano-Axiome erfüllen. Dann gibt es bereits, und zwar allein aufgrund der Tatsache der Dedekind-Peano-Axiome, eine eindeutige Entsprechung zwischen diesen beiden Mengen. Eine Strichfolge entspricht also eindeutig einer Zahl im Dezimalsystem.
Strichsystem
Zehnersystem
Dreiersystem
Eurosystem
Die Entsprechung in der Tabelle entsteht dadurch, dass man in jeder Spalte unabhängig voneinander im jeweiligen System
(gleichschnell)
zählt.
Da die Abbildung insbesondere die Null respektieren soll, muss
sein. Da die Abbildung die Nachfolgerabbildungen respektieren soll, gilt generell
für alle
.
Speziell gilt
Aus dem gleichen Grund muss unter Verwendung des schon Bewiesenen
Ebenso muss
u.s.w gelten. Hier hat man keine Wahlmöglichkeiten, alles ist durch die Nachfolgereigenschaft bestimmt. Da jedes Element aus von aus durch die Nachfolgerabbildung schließlich und genau einmal erreicht wird, ist dies eine wohldefinierte Abbildung von nach .
Zum Nachweis der Surjektivität betrachten wir die Menge
Wir müssen zeigen, dass
ist. Dazu wenden wir das Induktionsaxiom für an. Wegen
gehört
.
Wenn
ist, so ist also
für ein
.
Wegen der Verträglichkeit mit der Nachfolgerabbildung ist
d.h. auch
.
Daher ist unter dem Nachfolger abgeschlossen und nach dem Induktionsaxiom ist also
.
Zum Nachweis der Injektivität seien
verschieden. und zwar sei ein
(direkter oder)
höherer Nachfolger von . Dann ist der entsprechende Nachfolger von und insbesondere davon verschieden
(siehe
Aufgabe),
da das Nachfolgernehmen in injektiv ist.
Es gibt also im Wesentlichen, d.h. wenn man von den Benennungen absieht, genau eine Menge von natürlichen Zahlen. Für das im Wesentlichen eindeutig bestimmte Modell der Dedekind-Peano-Axiome verwenden wir das Symbol und sprechen von den natürlichen Zahlen.