Eigentliche Bewegungsgruppe/Fix/Endliche Untergruppe/Äquivalente Halbachsen/Isomorphe Isotropiegruppen/Fakt
Erscheinungsbild
Es sei eine endliche Untergruppe der Gruppe der eigentlichen, linearen Isometrien des . Zu einer Halbachse von sei
Dann sind für zwei äquivalente Halbachsen und die Gruppen und isomorph.
Insbesondere besitzen sie die gleiche Ordnung.