Endliche separable Körpererweiterung/Satz vom primitiven Element/Fakt/Beweis

Aus Wikiversity
Zur Navigation springen Zur Suche springen
Beweis

Bei endlich folgt die Aussage sofort aus Fakt, wir können also als unendlich annehmen. Es sei . Es genügt zu zeigen, dass man sukzessive zwei Erzeuger davon durch einen Erzeuger ersetzen kann. Dabei ist ebenfalls separabel. Sei also gegeben und . Es sei eine Körpererweiterung, unter der die Minimalpolynome von und von in Linearfaktoren zerfallen. Es gibt gemäß Fakt -Einbettungen

Wir betrachten das Polynom

das zu gehört. Dies ist nicht das Nullpolynom, da keiner der Linearfaktoren gleich ist. Daher besitzt nur endlich viele Nullstellen und somit gibt es, da unendlich ist, ein mit . Die Elemente sind alle verschieden. Aus für folgt nämlich , und wäre doch eine Nullstelle von . Es gibt also verschiedene Einbettungen von nach und insbesondere ist , also ist .

Zur bewiesenen Aussage