Es sei
-
ein Potential zu , also eine differenzierbare Funktion, deren Gradientenfeld gleich ist. Wir zeigen, dass sogar die zusammengesetzte Abbildung
-
injektiv ist. Aufgrund der Kettenregel ist die Ableitung dieser Abbildung gleich
-
Nach
Fakt
steht
senkrecht auf dem Tangentialraum zu im Punkt . Insbesondere gehört nicht zum Tangentialraum
(da das Skalarprodukt positiv definit ist),
also nicht zum Kern von . Daher ist
-
D.h. dass keine Nullstelle besitzt und daher ist nach
Fakt
streng wachsend oder streng fallend, also injektiv.