Gruppe/Elementordnung/Z mod d/Aufgabe/Lösung

Aus Wikiversity
Zur Navigation springen Zur Suche springen

Wenn im Bild eines Gruppenhomomorphismus

liegt, so liegt insbesondere in einer Untergruppe einer Ordnung und nach dem Satz von Lagrange ist die Ordnung von ebenfalls . Die Ordnung ist also höchstens gleich dem Minimum der natürlichen Zahlen , für die es einen solchen Gruppenhomomorphismus gibt.

Sei umgekehrt die Ordnung von . Der kanonische Gruppenhomomorphismus

besitzt den Kern . Aufgrund des Satzes vom induzierten Homomorphismus induziert dieser Gruppenhomomorphismus einen Gruppenhomomorphismus

und gehört dabei zum Bild.