Gruppentheorie/Einführender Abschnitt für Studienanfänger/Textabschnitt

Aus Wikiversity
Zur Navigation springen Zur Suche springen


Definition  

Eine Menge mit einem ausgezeichneten Element und mit einer Verknüpfung

heißt Gruppe, wenn folgende Eigenschaften erfüllt sind.

  1. Die Verknüpfung ist assoziativ, d.h. für alle gilt
  2. Das Element ist ein neutrales Element, d.h. für alle gilt
  3. Zu jedem gibt es ein inverses Element, d.h. es gibt ein mit

Man beachte, dass kein Kommutativitätsgesetz vorausgesetzt wird, so dass man die zweifachen Formulierungen in Teil (2) und (3) benötigt (eine Gruppe, wo zusätzlich die Kommutativität gilt, heißt kommutative Gruppe). Die Symbole für die Verknüpfung und für das neutrale Element sind willkürlich gewählt, man könnte sie auch anders nennen. Es ist aber sinnvoll, bei der abstrakten Einführung eine Bezeichnung zu wählen, die intuitiv nicht vorbelastet ist. Eine Bezeichnung wie für die Verknüpfung und für das neutrale Element birgt die Gefahr, dass man sich zu Schlüssen verleiten lässt, die von der Multiplikation von Zahlen her vertraut sind, die aber eventuell für eine beliebige Gruppe nicht gelten müssen.

Die additiven Körperaxiome kann man nun so lesen, dass die Menge zusammen mit dem ausgezeichneten Element und der Addition als Verknüpfung eine Gruppe bildet, die zusätzlich kommutativ ist. Ebenso bildet die Menge (also ganz ohne die ) mit dem neutralen Element (das wegen der expliziten Voraussetzung der Körperaxiome von verschieden ist und daher zu gehört) und der Multiplikation eine (ebenfalls kommutative) Gruppe. Wenn ein Körper vorliegt, so hat man also zugleich zwei Gruppen vorliegen, es ist aber falsch zu sagen, dass auf zweifache Weise eine Gruppe ist, da einerseits mit der Addition und andererseits (und eben nicht ) eine Gruppe mit der Multiplikation bildet.

Weitere Beispiele für Gruppen sind , dagegen ist mit der Multiplikation und ebensowenig keine Gruppe. Eine Gruppe ist niemals leer, da es ja ein neutrales Element enthalten muss. Die Menge, die nur aus einem einzigen Element besteht, ist mit der einzig darin möglichen Verknüpfung und dem einzig darin möglichen neutralen Element eine Gruppe. Man spricht von der trivialen Gruppe. Eine weitere Gruppe ist die zweielementige Menge

mit der von bekannten Multiplikation.

In einer Gruppe ist zu einem Element das Element mit der Eigenschaft (das es aufgrund der Gruppenaxiome geben muss) eindeutig bestimmt. Wenn nämlich und beide diese Eigenschaft besitzen, so gilt

Man beachte, dass in diesen Beweis die Bedingungen an und nicht völlig symmetrisch eingehen. Diese Eindeutigkeit erlaubt es, das zu einem Gruppenelement eindeutig bestimmte inverse Element als

zu bezeichnen.

Im Fall eines Körpers haben wir damit einen einzigen Beweis für die Eindeutigkeit des Negativen (also des Inversen der Addition) und des Inversen der Multiplikation gefunden.

In der Mathematik geht es zu einem beträchtlichen Teil um die Lösung von Gleichungen, und zwar um die Existenz von Lösungen, die Berechnung von Lösungen und die Eindeutigkeit von Lösungen. Bei einer Gruppe besitzen die formulierbaren Einzelgleichungen eine eindeutige Lösung. Insofern handelt es sich bei einer Gruppe um eine besonders einfache mathematische Struktur.



Lemma  

Sei eine Gruppe.

Dann besitzen zu je zwei Gruppenelementen die beiden Gleichungen

eindeutige Lösungen .

Beweis  

Wir betrachten die linke Gleichung. Aus beidseitiger Multiplikation mit (bzw. mit ) von links folgt, dass nur

als Lösung in Frage kommt. Wenn man dies einsetzt, so sieht man, dass es sich in der Tat um eine Lösung handelt.