Intervallschachtelung/K/Äquivalenzrelation/Aufgabe

Aus Wikiversity
Zur Navigation springen Zur Suche springen

Sei ein angeordneter Körper und sei die Menge aller Intervallschachtelungen auf . Wir sagen, dass zwei Intervallschachtelungen und zueinander verfeinerungsäquivalent sind, wenn folgendes gilt: Zu jedem gibt es ein mit und zu jedem gibt es ein mit .

  1. Zeige, dass die Verfeinerungsäquivalenz eine Äquivalenzrelation auf ist.
  2. Sei . Zeige, dass zwei verfeinerungsäquivalente Intervallschachtelungen die gleiche reelle Zahl definieren.
  3. Man gebe ein Beispiel für zwei reelle Intervallschachtelungen, die nicht verfeinerungsäquivalent sind, die aber die gleiche reelle Zahl definieren.
Zur Lösung, Alternative Lösung erstellen