Kommutative Gruppe/Kommutativer Ring/Tensorprodukt/Beispiel

Aus Wikiversity
Zur Navigation springen Zur Suche springen

Zu jeder kommutativen Gruppe und jedem kommutativen Ring enthält man im Tensorprodukt einen -Modul. Wenn endlich erzeugt und die Zerlegung (vergleiche den Hauptsatz über endlich erzeugte kommutative Gruppen)

vorliegt, so ist der tensorierte Modul die direkte Summe aus und den

wobei deren Gestalt von der Charakteristik des Ringes abhängt.