Zum Inhalt springen

Kommutative Ringtheorie/f nicht nilpotent/Existenz von Primidealen/Fakt/Beweis/Aufgabe/Lösung

Aus Wikiversity


Wir betrachten die Menge der Ideale

Diese Menge ist nicht leer, da sie das Nullideal enthält. Ferner ist sie induktiv geordnet (bezüglich der Inklusion). Ist nämlich , , eine total geordnete Teilmenge von , so ist deren Vereinigung ebenfalls ein Ideal, das keine Potenz von enthält. Nach dem Lemma von Zorn gibt es daher maximale Elemente in .

Wir behaupten, dass ein solches maximales Element ein Primideal ist. Es sei dazu und , und sei angenommen. Dann hat man echte Inklusionen

Wegen der Maximalität können die beiden Ideale rechts nicht zu gehören, und das bedeutet, dass es Exponenten gibt mit

Dann ergibt sich der Widerspruch