Kommutativer Ring/Injektiver Modul/Definition
Erscheinungsbild
Injektiver Modul
Es sei ein kommutativer Ring. Ein -Modul heißt injektiv, wenn es für jeden -Modul , jeden Untermodul und jeden -Modul-Homomorphismus eine Fortsetzung
gibt.
Es sei ein kommutativer Ring. Ein -Modul heißt injektiv, wenn es für jeden -Modul , jeden Untermodul und jeden -Modul-Homomorphismus eine Fortsetzung
gibt.