Kreis/Überdeckung/Möbiuszykel/Komplexe stetige Trivialisierung/Beispiel
Wir betrachten auf dem Kreis die Überdeckung mit zwei offenen (zu reellen Intervallen homöomorphen) Kreissegmenten
deren Durchschnitt
die Vereinigung von zwei Intervallen ist. Wir betrachten verschiedene Garben von kommutativen Gruppen, die wir multiplikativ schreiben. Es sei die auf definierte Funktion, die durch den konstanten Wert auf und den Wert auf gegeben ist. Dies ist ein nichttrivialer Čech-Kozykel für die Garbe der lokal konstanten Funktionen mit Werten in der Einheitengruppe zu einem Körper und ebenso in der Garbe der stetigen Funktionen mit Werten in , wobei ist. Ob dieser Kozykel eine nichttriviale Čech-Kohomologieklasse in definiert ist äquivalent dazu, ob es (lokal konstante, stetige) Funktionen und mit gibt. Im lokal konstanten Fall ist dies nicht möglich, da lokal konstante Funktionen auf den zusammenhängenden Segmenten bzw. konstant sind und daher auch konstant ist, also . Bei der Garbe der stetigen reellwertigen nullstellenfreien Funktionen ist es ebenfalls nicht möglich. In diesem Fall haben und konstantes Vorzeichen und somit stimmt nur auf genau einem Intervall des Durchschnittes mit überein. Die zugehörige nichttriviale erste Čech-Kohomologieklasse
repräsentiert das Möbiusband über dem Einheitskreis. Im komplexen Fall ist es hingegen möglich, als einen Quotienten von zwei nullstellenfreien komplexwertigen stetigen Funktionen zu schreiben, man kann und für eine Funktion nehmen, die auf die konstante -Funktion und auf die konstante -Funktion und dazwischen, also auf , die Werte stetig entlang des komplexen Einheitskreises wählt.