Kurs:Algebraische Kurven (Osnabrück 2012)/Arbeitsblatt 10/latex

Aus Wikiversity
Zur Navigation springen Zur Suche springen

\setcounter{section}{10}






\zwischenueberschrift{Aufwärmaufgaben}




\inputaufgabegibtloesung
{}
{

Sei $K$ ein \definitionsverweis {Körper}{}{} und sei $A$ eine kommutative $K$-\definitionsverweis {Algebra}{}{,} die als $K$-\definitionsverweis {Modul}{}{} \definitionsverweis {endlich}{}{} sei. Zeige, dass ein Element $f \in A$ genau dann eine \definitionsverweis {Einheit}{}{} ist, wenn es ein \definitionsverweis {Nichtnullteiler}{}{} ist.

}
{} {}




\inputaufgabe
{}
{

Seien $K$ und $L$ Körper, sei
\mathl{K \subseteq L}{} eine \definitionsverweis {endliche Körpererweiterung}{}{} und sei $A$,
\mathl{K \subseteq A \subseteq L}{,} ein Zwischenring. Zeige, dass dann $A$ ebenfalls ein Körper ist.

}
{} {}




\inputaufgabe
{}
{

Es sei $R$ ein \definitionsverweis {kommutativer Ring}{}{} und $M$ ein $R$-\definitionsverweis {Modul}{}{.} Dann ist $M$ genau dann \definitionsverweis {noethersch}{}{,} wenn jede aufsteigende Kette
\mathdisp {M_0 \subseteq M_1 \subseteq M_2 \subseteq \ldots} { }
von $R$-\definitionsverweis {Untermoduln}{}{} stationär wird.

}
{} {}

Die folgenden Aufgaben verwenden den Begriff des artinschen Moduls, der \anfuehrung{dual}{} zum Begriff des noetherschen Moduls ist.

Sei $R$ ein kommutativer Ring. Ein $R$-Modul $M$ heißt \definitionswort {artinsch}{,} wenn jede absteigende Kette
\mathdisp {M_1 \supseteq M_2 \supseteq M_3 \supseteq \ldots} { }
von $R$-Untermoduln stationär wird.


Ein kommutativer Ring $R$ heißt
\definitionswortenp{artinsch}{,} wenn er als $R$-Modul artinsch ist.




\inputaufgabe
{}
{

Es sei $A$ ein \definitionsverweis {artinscher}{}{} Integritätsbereich. Man zeige, dass $A$ ein Körper ist. Man gebe ein Beispiel eines artinschen kommutativen Ringes, der kein Körper ist.

}
{} {}




\inputaufgabe
{}
{

Sei $\mathfrak a$ ein \definitionsverweis {Radikal}{}{} in einem kommutativen Ring. Zeige, dass $\mathfrak a$ der Durchschnitt von \definitionsverweis {Primidealen}{}{} ist.

}
{} {}






\zwischenueberschrift{Aufgaben zum Abgeben}




\inputaufgabe
{}
{

Sei $K$ ein algebraisch abgeschlossener Körper und
\mathl{F \in K[X,Y]}{} ein nichtkonstantes Polynom. Zeige, dass der \definitionsverweis {Restklassenring}{}{}
\mathdisp {K[X,Y]/(F)} { }
eine \definitionsverweis {endliche}{}{} $K[T]$-Algebra ist.

}
{} {}




\inputaufgabe
{}
{

Seien
\mathl{R,S,T}{} \definitionsverweis {kommutative Ringe}{}{} und seien
\mathl{\varphi:R \rightarrow S}{} und
\mathl{\psi:S \rightarrow T}{} Ringhomomorphismen derart, dass $S$ \definitionsverweis {endlich}{}{} über $R$ und $T$ endlich über $S$ ist. Zeige, dass dann auch $T$ endlich über $R$ ist.

}
{} {}




\inputaufgabe
{}
{

Sei $A$ ein kommutativer Ring und sei
\mathdisp {0 \longrightarrow M \longrightarrow N \longrightarrow P \longrightarrow 0} { }
eine \definitionsverweis {kurze exakte Sequenz}{}{} von $A$-Moduln. Man zeige, dass $N$ genau dann artinsch ist, wenn $M$ und $P$ artinsch sind.

}
{} {}




\inputaufgabe
{}
{

Sei $K$ ein \definitionsverweis {Körper}{}{} und $A$ eine \definitionsverweis {endliche}{}{} $K$-Algebra. Zeige: Dann ist $A$ \definitionsverweis {artinsch}{}{.}

}
{} {}




\inputaufgabe
{}
{

Sei $R$ ein kommutativer Ring und $M$ ein $R$-\definitionsverweis {Modul}{}{.} Zeige: Wenn $M$ \definitionsverweis {artinsch}{}{} und
\mathl{\phi: M \to M}{} $R$-linear und injektiv ist, so ist $\phi$ ein Isomorphismus. Formuliere und beweise auch eine analoge Aussage für den Fall, das $M$ noethersch ist.

}
{} {}



<< | Kurs:Algebraische Kurven (Osnabrück 2012) | >>

PDF-Version dieses Arbeitsblattes

Zur Vorlesung (PDF)