Zum Inhalt springen

Kurs:Analysis (Osnabrück 2014-2016)/Teil I/Arbeitsblatt 3/latex

Aus Wikiversity

\setcounter{section}{3}






\zwischenueberschrift{Übungsaufgaben}




\inputaufgabe
{}
{

Zeige, und zwar allein unter Bezug auf Rechengesetze in $\Z$, dass die durch \aufzaehlungzwei {
\mathdisp {{ \frac{ a }{ c } } \cdot { \frac{ b }{ d } } \defeq { \frac{ ab }{ cd } }} { }
} {
\mathdisp {{ \frac{ a }{ c } } + { \frac{ b }{ d } } \defeq { \frac{ ad+bc }{ cd } }} { }
} definierte Addition und Multiplikation auf den rationalen Zahlen wohldefiniert ist, und dass die Assoziativität, die Kommutativität und das Distributivgesetz gelten.

}
{} {}




\inputaufgabe
{}
{

Es seien $x,y,z,w$ Elemente in einem \definitionsverweis {Körper}{}{,} wobei $z$ und $w$ nicht $0$ seien. Beweise die folgenden Bruchrechenregeln.

\aufzaehlungacht{
\mavergleichskettedisp
{\vergleichskette
{ { \frac{ x }{ 1 } } }
{ =} { x }
{ } { }
{ } { }
{ } { }
} {}{}{,} }{
\mavergleichskettedisp
{\vergleichskette
{ { \frac{ 1 }{ z } } }
{ =} { z^{-1} }
{ } { }
{ } { }
{ } { }
} {}{}{,} }{
\mavergleichskettedisp
{\vergleichskette
{ { \frac{ 1 }{ -1 } } }
{ =} { -1 }
{ } { }
{ } { }
{ } { }
} {}{}{,} }{
\mavergleichskettedisp
{\vergleichskette
{ { \frac{ 0 }{ z } } }
{ =} {0 }
{ } { }
{ } { }
{ } { }
} {}{}{,} }{
\mavergleichskettedisp
{\vergleichskette
{ { \frac{ z }{ z } } }
{ =} { 1 }
{ } { }
{ } { }
{ } { }
} {}{}{,} }{
\mavergleichskettedisp
{\vergleichskette
{ { \frac{ x }{ z } } }
{ =} { { \frac{ xw }{ zw } } }
{ } { }
{ } { }
{ } { }
} {}{}{,} }{
\mavergleichskettedisp
{\vergleichskette
{ { \frac{ x }{ z } } \cdot { \frac{ y }{ w } } }
{ =} { { \frac{ xy }{ zw } } }
{ } { }
{ } { }
{ } { }
} {}{}{,} }{
\mavergleichskettedisp
{\vergleichskette
{ { \frac{ x }{ z } } + { \frac{ y }{ w } } }
{ =} { { \frac{ xw+yz }{ zw } } }
{ } { }
{ } { }
{ } { }
} {}{}{.} } Gilt die zu (8) analoge Formel, die entsteht, wenn man die Addition mit der Multiplikation \zusatzklammer {und die Subtraktion mit der Division} {} {} vertauscht, also
\mavergleichskettedisp
{\vergleichskette
{ (x-z) \cdot (y-w) }
{ =} { (x+w)(y+z)-(z+w) }
{ } { }
{ } { }
{ } { }
} {}{}{?} Zeige, dass die \anfuehrung{beliebte Formel}{}
\mavergleichskettedisp
{\vergleichskette
{ { \frac{ x }{ z } } + { \frac{ y }{ w } } }
{ =} {{ \frac{ x+y }{ z+w } } }
{ } { }
{ } { }
{ } { }
} {}{}{} nicht gilt.

}
{} {}




\inputaufgabe
{}
{

Zeige, dass in einem \definitionsverweis {Körper}{}{} das \anfuehrung{umgekehrte Distributivgesetz}{,} also
\mavergleichskettedisp
{\vergleichskette
{ a+(bc) }
{ =} { (a+b) \cdot (a+c) }
{ } { }
{ } { }
{ } { }
} {}{}{,} nicht gilt.

}
{} {}




\inputaufgabe
{}
{

Beschreibe und beweise Regeln für die Addition und die Multiplikation von geraden und ungeraden ganzen Zahlen. Man definiere auf der zweielementigen Menge
\mathdisp {\{G,U\}} { }
eine \anfuehrung{Addition}{} und eine \anfuehrung{Multiplikation}{,} die diese Regeln \anfuehrung{repräsentieren}{.}

}
{} {}




\inputaufgabe
{}
{

Zeige, dass die einelementige Menge $\{0\}$ alle Körperaxiome erfüllt mit der einzigen Ausnahme, dass
\mavergleichskette
{\vergleichskette
{ 0 }
{ = }{ 1 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} ist.

}
{} {}




\inputaufgabe
{}
{

Es sei $K$ ein \definitionsverweis {Körper}{}{.} Zeige, dass man jeder natürlichen Zahl
\mavergleichskette
{\vergleichskette
{n }
{ \in }{ \N }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} ein Körperelement $n_K$ zuordnen kann, derart, dass $0_K$ das Nullelement in $K$ und $1_K$ das Einselement in $K$ ist und dass
\mavergleichskettedisp
{\vergleichskette
{ (n+1)_K }
{ =} { n_K+1_K }
{ } { }
{ } { }
{ } { }
} {}{}{} gilt. Zeige, dass diese Zuordnung die Eigenschaften
\mathdisp {(n+m)_K = n_K + m_K \text{ und } (nm)_K = n_K \cdot m_K} { }
besitzt.

Erweitere diese Zuordnung auf die ganzen Zahlen $\Z$ und zeige, dass die angeführten strukturellen Eigenschaften ebenfalls gelten.

}
{} {}




\inputaufgabe
{}
{

Skizziere den \definitionsverweis {Graphen}{}{} der reellen Addition \maabbeledisp {+} {\R \times \R} {\R } {(x,y)} {x+y } {,} und den Graphen der reellen Multiplikation \maabbeledisp {\cdot} {\R \times \R} {\R } {(x,y)} {x \cdot y } {.}

}
{} {}




\inputaufgabegibtloesung
{}
{

Zwei Personen, \mathkor {} {A} {und} {B} {,} liegen unter einer Palme, $A$ besitzt $2$ Fladenbrote und $B$ besitzt $3$ Fladenbrote. Eine dritte Person $C$ kommt hinzu, die kein Fladenbrot besitzt, aber $5$ Taler. Die drei Personen werden sich einig, für die $5$ Taler die Fladenbrote untereinander gleichmäßig aufzuteilen. Wie viele Taler gibt $C$ an $A$ und an $B$?

}
{} {}




\inputaufgabe
{}
{

Man gebe die Antworten als Bruch \zusatzklammer {bezogen auf das angegebene Vergleichsmaß} {} {:} Um wie viel ist eine Dreiviertelstunde länger als eine halbe Stunde, und um wie viel ist eine halbe Stunde kürzer als eine Dreiviertelstunde?

}
{} {}




\inputaufgabe
{}
{

Man erläutere die Uhrzeitangaben \anfuehrung{halb fünf}{,} \anfuehrung{viertel fünf}{,} \anfuehrung{drei viertel fünf}{.} Was würde \anfuehrung{ein sechstel fünf}{} und \anfuehrung{drei siebtel fünf}{} bedeuten?

}
{} {}




\inputaufgabegibtloesung
{}
{

Heinz-Peter schaut am Morgen in den Spiegel und entdeckt fünf Pickel auf seiner Stirn. Diese müssen alle ausgedrückt werden, wobei zwei Pickel so nah beieinander liegen, dass sie unmittelbar hintereinander behandelt werden müssen. Wie viele Reihenfolgen gibt es, die Pickel auszudrücken?

}
{} {}




\inputaufgabegibtloesung
{}
{

Vor einem Fußballspiel begrüßt jeder der elf Spieler einer Mannschaft jeden Spieler der anderen Mannschaft, jeder Spieler begrüßt die vier Unparteiischen und diese begrüßen sich alle untereinander. Wie viele Begrüßungen finden statt?

}
{} {}




\inputaufgabegibtloesung
{}
{

Zeige, dass die \definitionsverweis {Binomialkoeffizienten}{}{} die rekursive Beziehung
\mavergleichskettedisp
{\vergleichskette
{ \binom { n+1 } { k } }
{ =} { \binom { n } { k } + \binom { n } { k-1 } }
{ } { }
{ } { }
{ } { }
} {}{}{} erfüllen.

}
{} {}




\inputaufgabe
{}
{

Zeige, dass die \definitionsverweis {Binomialkoeffizienten}{}{} natürliche Zahlen sind.

}
{} {}




\inputaufgabegibtloesung
{}
{

Es sei $M$ eine $n$-elementige Menge. Zeige, dass die Anzahl der $k$-elementigen Teilmengen von $M$ gleich dem \definitionsverweis {Binomialkoeffizienten}{}{}
\mathdisp {\binom { n } { k }} { }
ist.

}
{} {}




\inputaufgabe
{}
{

Beweise die Formel
\mavergleichskettedisp
{\vergleichskette
{ 2^n }
{ =} { \sum_{k = 0}^n \binom { n } { k } }
{ } { }
{ } { }
{ } { }
} {}{}{.}

}
{} {}




\inputaufgabe
{}
{

Es sei $K$ ein \definitionsverweis {Körper}{}{} mit
\mavergleichskette
{\vergleichskette
{2 }
{ \neq }{0 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.} Zeige, dass für
\mavergleichskette
{\vergleichskette
{ f,g }
{ \in }{K }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} die Beziehung
\mavergleichskettedisp
{\vergleichskette
{fg }
{ =} { { \frac{ 1 }{ 4 } } { \left( { \left( f+g \right) }^2 - { \left( f-g \right) }^2 \right) } }
{ } { }
{ } { }
{ } { }
} {}{}{} gilt.

}
{} {}




\inputaufgabegibtloesung
{}
{

Beweise durch Induktion, dass für
\mavergleichskette
{\vergleichskette
{n }
{ \geq }{10 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} die Abschätzung
\mavergleichskettedisp
{\vergleichskette
{3^n }
{ \geq} { n^4 }
{ } { }
{ } { }
{ } { }
} {}{}{} gilt.

}
{} {}






\zwischenueberschrift{Aufgaben zum Abgeben}




\inputaufgabe
{2}
{

Zeige für einen \definitionsverweis {Körper}{}{} $K$ die folgenden Eigenschaften.

(1) Für jedes
\mavergleichskette
{\vergleichskette
{ a }
{ \in }{ K }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} ist die \definitionsverweis {Abbildung}{}{} \maabbeledisp {\alpha_a} {K} {K } {x} {x+a } {,} \definitionsverweis {bijektiv}{}{.}

(2) Für jedes
\mathbed {b \in K} {}
{b \neq 0} {}
{} {} {} {,} ist die Abbildung \maabbeledisp {\mu_b} {K} {K } {x} {bx } {,} bijektiv.

}
{} {}




\inputaufgabe
{3}
{

Zeige, dass die \anfuehrung{Rechenregel}{}
\mavergleichskettedisp
{\vergleichskette
{ { \frac{ a }{ b } } + { \frac{ c }{ d } } }
{ =} { { \frac{ a+c }{ b+d } } }
{ } { }
{ } { }
{ } { }
} {}{}{} bei
\mavergleichskette
{\vergleichskette
{ a,c }
{ \in }{ \N_+ }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} \zusatzklammer {und
\mavergleichskette
{\vergleichskette
{ b, d, b+d }
{ \in }{ \Z \setminus \{0\} }
{ }{ }
{ }{ }
{ }{ }
} {}{}{}} {} {} niemals gilt. Man gebe ein Beispiel mit
\mavergleichskette
{\vergleichskette
{ a,b,c,d,b+d }
{ \neq }{ 0 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{,} wo diese Regel gilt.

}
{} {}




\inputaufgabe
{6}
{

Beweise das allgemeine Distributivgesetz für einen \definitionsverweis {Körper}{}{.}

}
{} {}




\inputaufgabe
{5}
{

Wir betrachten die Menge
\mavergleichskettedisp
{\vergleichskette
{K }
{ =} {\Q \times \Q }
{ =} {{ \left\{ (a,b) \mid a,b \in \Q \right\} } }
{ } { }
{ } { }
} {}{}{} mit den beiden ausgezeichneten Elementen
\mathdisp {0=(0,0) \text{ und } 1=(1,0)} { , }
der Addition
\mavergleichskettedisp
{\vergleichskette
{ (a,b)+(c,d) }
{ \defeq} {(a+c, b+d) }
{ } { }
{ } { }
{ } { }
} {}{}{} und der Multiplikation
\mavergleichskettedisp
{\vergleichskette
{ (a,b) \cdot (c,d) }
{ \defeq} {(ac-bd, ad+bc) }
{ } { }
{ } { }
{ } { }
} {}{}{.} Zeige, dass $K$ mit diesen Operationen ein \definitionsverweis {Körper}{}{} ist.

}
{} {}




\inputaufgabe
{3}
{

Beweise die Formel
\mavergleichskettedisp
{\vergleichskette
{ n 2^{n-1} }
{ =} { \sum_{k = 0}^n k \binom { n } { k } }
{ } { }
{ } { }
{ } { }
} {}{}{.}

}
{} {}


<< | Kurs:Analysis (Osnabrück 2014-2016)/Teil I | >>

PDF-Version dieses Arbeitsblattes

Zur Vorlesung (PDF)