Kurs:Analysis (Osnabrück 2014-2016)/Teil II/Arbeitsblatt 49/latex

Aus Wikiversity
Zur Navigation springen Zur Suche springen

\setcounter{section}{49}






\zwischenueberschrift{Übungsaufgaben}




\inputaufgabe
{}
{

Bestimme das \definitionsverweis {Taylor-Polynom}{}{} vom Grad $\leq 3$ für die \definitionsverweis {Funktion}{}{} \maabbeledisp {} { \R^2} {\R } {(x,y)} {x^2 -y \cdot \sin x } {,}


im Nullpunkt
\mathl{(0,0)}{.}

}
{} {}




\inputaufgabegibtloesung
{}
{

Bestimme das Taylor-Polynom zweiter Ordnung der Funktion \maabbeledisp {f} {\R^2} {\R } {(x,y)} {f(x,y) = e^{x-y^2} } {,} im Punkt
\mathl{(1,1)}{.}

}
{} {}




\inputaufgabegibtloesung
{}
{

Bestimme das Taylor-Polynom zweiter Ordnung der Funktion \maabbeledisp {f} {\R^3} {\R } {(x,y,z)} {f(x,y,z) = e^{x } yz^2 -xy } {,} im Punkt
\mathl{(1,0,-1)}{.}

}
{} {}




\inputaufgabegibtloesung
{}
{

Bestimme das Taylor-Polynom zweiter Ordnung der Funktion \maabbeledisp {f} {\R^2} {\R } {(x,y)} {f(x,y) = e^{ \sin x - \cos y } } {,} im Punkt
\mathl{\left( 0 , \, { \frac{ \pi }{ 2 } } \right)}{.}

}
{} {}




\inputaufgabe
{}
{

Notiere das \definitionsverweis {Taylor-Polynom}{}{} für eine \zusatzklammer {hinreichend oft \definitionsverweis {differenzierbare}{}{}} {} {} Funktion in \mathkor {} {2} {oder} {3} {} Variablen für die Grade
\mathl{k=1,2,3}{.}

}
{} {}




\inputaufgabe
{}
{

Es sei
\mavergleichskettedisp
{\vergleichskette
{f(x,y) }
{ =} {x^2y-3xy+5y^2+4x }
{ } { }
{ } { }
{ } { }
} {}{}{.} Berechne das \definitionsverweis {Taylor-Polynom}{}{} der Ordnung $3$ im Punkt
\mathl{P=(1,-2)}{} algebraisch \zusatzklammer {d.h. man drücke das Polynom in den neuen Variablen
\mathl{u=x-1,v=y+2}{} aus und lese daraus das Taylor-Polynom ab} {} {} und über Ableitungen.

}
{} {}




\inputaufgabe
{}
{

Es sei $f$ ein \definitionsverweis {Polynom}{}{} in $n$ Variablen vom Grad
\mathl{\leq k}{.} Zeige, dass $f$ mit dem \definitionsverweis {Taylor-Polynom}{}{} vom Grad
\mathl{\leq k}{} von $f$ im Nullpunkt übereinstimmt.

}
{} {}

In den folgenden Aufgaben werden einige Eigenschaften der Polynomialkoeffizienten besprochen, die eine Verallgemeinerung der Binomialkoeffizienten sind.

Sei ${n} \in \N$ und $r=(r_1, \ldots , r_{n})$ ein ${n}$-\definitionsverweis {Tupel}{}{} natürlicher Zahlen. Es sei $k \defeq \sum_{ j=1}^{n} r_{ j }$. Dann nennt man die Zahl
\mathdisp {\binom{ k }{ r } = \frac{ {k}!}{ r_1! r_2! \cdots r_{n}!}} { }
einen \definitionswort {Polynomialkoeffizienten}{.}





\inputaufgabe
{}
{

In einem Studium werden $11$ Leistungsnachweise verlangt, und zwar $3$ Seminarscheine, $5$ Klausuren, $2$ mündliche Prüfungen und eine Hausarbeit, die in beliebiger Reihenfolge erbracht werden können. Wie viele Reihenfolgen gibt es, um diese Leistungsnachweise zu erbringen?

}
{} {}




\inputaufgabe
{}
{

Es seien
\mavergleichskette
{\vergleichskette
{n,k }
{ \in }{\N }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} und
\mavergleichskette
{\vergleichskette
{r }
{ = }{(r_1 , \ldots , r_k) }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} mit
\mavergleichskette
{\vergleichskette
{}
{ n }{}
{ }{}
{ }{}
{ }{}
} {}{}{.} Zeige, dass die Anzahl der \definitionsverweis {Abbildungen}{}{} \maabbdisp {} { { \{ 1 , \ldots , n \} } } { \{ 1 , \ldots , k \} } {,} bei denen das \definitionsverweis {Urbild}{}{} zu
\mavergleichskette
{\vergleichskette
{j }
{ \in }{ { \{ 1 , \ldots , n \} } }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} aus genau
\mathl{r_j}{} Elementen besteht, gleich dem \definitionsverweis {Multinomialkoeffizienten}{}{}
\mavergleichskettedisp
{\vergleichskette
{ \binom{n}{r} }
{ =} { { \frac{ n! }{ r_1! \cdots r_k! } } }
{ } { }
{ } { }
{ } { }
} {}{}{} ist.

}
{} {}




\inputaufgabe
{}
{

Es seien
\mavergleichskette
{\vergleichskette
{k,n }
{ \in }{ \N }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} und
\mavergleichskette
{\vergleichskette
{r }
{ = }{(r_1 , \ldots , r_n) }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} mit
\mavergleichskette
{\vergleichskette
{ \sum_{j = 1}^k r_j }
{ = }{ n }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.} Zeige, dass die Anzahl der $n$-Tupel
\mathdisp {(j_1 , \ldots , j_n) \in \{ 1 , \ldots , k \}^n} { , }
in denen die Zahl $j$ genau $r_j$-mal vorkommt, gleich
\mavergleichskettedisp
{\vergleichskette
{ \binom{n}{r} }
{ =} { { \frac{ n! }{ r_1! \cdots r_k! } } }
{ } { }
{ } { }
{ } { }
} {}{}{} ist.

}
{} {}




\inputaufgabe
{}
{

Zeige, dass die Anzahl der geordneten \definitionsverweis {Partitionen}{}{} mit eventuell leeren Blöcken zum Anzahltupel
\mavergleichskette
{\vergleichskette
{r }
{ = }{(r_1 , \ldots , r_k) }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} einer $n$-elementigen Menge gleich
\mavergleichskettedisp
{\vergleichskette
{ \binom{n}{r} }
{ =} { { \frac{ n! }{ r_1! \cdots r_k! } } }
{ } { }
{ } { }
{ } { }
} {}{}{} ist.

}
{} {}




\inputaufgabe
{}
{

Es seien $a_1 , \ldots , a_{ n }$ reelle Zahlen. Beweise den \stichwort {Polynomialsatz} {,} das ist die Gleichung
\mathdisp {(a_1 + \cdots + a_{ n })^{ k } = \sum_{ r=( r_1 , \ldots , r_{ n }), \, \sum_{i=1}^{ n } r_i =k } \binom{ k }{ r } a_1^{ r_1}a_2^{ r_2} \cdots a_{ n }^{ r_{ n} }} { . }

}
{} {}




\inputaufgabegibtloesung
{}
{

Es sei \maabbdisp {f} {G} {\R } {} eine zweimal \definitionsverweis {stetig differenzierbare Funktion}{}{,} wobei
\mathl{G \subseteq \R^n}{} eine \definitionsverweis {offene Menge}{}{} sei. Zeige, dass für
\mathl{P \in G}{} und
\mathl{v \in V}{} die Beziehung
\mavergleichskettedisp
{\vergleichskette
{ \sum_{ r \in \N^n,\, \betrag { \, r \, } = 2 } { \frac{ 1 }{ r! } } D^r f(P) \cdot v^r }
{ =} { { \frac{ 1 }{ 2 } } \operatorname{Hess}_{ P } \, f ( v,v) }
{ } { }
{ } { }
{ } {}
} {}{}{} gilt.

}
{} {}




\inputaufgabe
{}
{

Sei $V$ ein \definitionsverweis {endlichdimensionaler}{}{} \definitionsverweis {reeller Vektorraum}{}{,}
\mathl{G \subseteq V}{} \definitionsverweis {offen}{}{,}
\mathl{P \in G}{} und seien \maabbdisp {f,g} {G} {\R } {} zwei zweimal \definitionsverweis {stetig differenzierbare Funktionen}{}{.} Zeige durch ein Beispiel, dass das \definitionsverweis {Taylor-Polynom}{}{} zum Produkt $fg$ im Punkt $P$ vom Grad $\leq 2$ nicht das Produkt der beiden Taylor-Polynome von \mathkor {} {f} {und} {g} {} in
\mathl{P}{} vom Grad $\leq 1$ sein muss.

}
{} {}






\zwischenueberschrift{Aufgaben zum Abgeben}




\inputaufgabe
{4}
{

Bestimme das \definitionsverweis {Taylor-Polynom}{}{} vom Grad $\leq 3$ für die \definitionsverweis {Funktion}{}{} \maabbeledisp {} { \R^3} {\R } {(x,y,z)} {z \cdot \exp (xy) } {,}


im Nullpunkt
\mathl{(0,0,0)}{.}

}
{} {}




\inputaufgabe
{4}
{

Es sei
\mavergleichskettedisp
{\vergleichskette
{f(x,y) }
{ =} {-2xy^3-5x^2y^2+4xy^2-7y+3 }
{ } { }
{ } { }
{ } { }
} {}{}{.} Berechne das \definitionsverweis {Taylor-Polynom}{}{} der Ordnung $3$ im Punkt
\mathl{P=(-3,4)}{} algebraisch \zusatzklammer {d.h. man drücke das Polynom in den neuen Variablen
\mathl{u=x+3,v=y-4}{} aus und lese daraus das Taylor-Polynom ab} {} {} und über Ableitungen.

}
{} {}




\inputaufgabe
{5}
{

Sei $V$ ein \definitionsverweis {endlichdimensionaler}{}{} \definitionsverweis {reeller Vektorraum}{}{,}
\mathl{G \subseteq V}{} \definitionsverweis {offen}{}{,}
\mathl{P \in G}{} und seien \maabbdisp {f,g} {G} {\R } {} zwei $k$-mal \definitionsverweis {stetig differenzierbare Funktionen}{}{} mit den \definitionsverweis {Taylor-Polynomen}{}{} \mathkor {} {T_k(f)} {und} {T_k(g)} {} in $P$ vom Grad
\mathl{\leq k}{.} Zeige, dass das Produkt $fg$ ebenfalls $k$-mal \definitionsverweis {stetig differenzierbar}{}{} ist, und dass für das Taylor-Polynom
\mathl{T_k(fg)}{} von $fg$ in $P$ vom Grad $\leq k$ die Beziehung
\mavergleichskettedisp
{\vergleichskette
{T_k(fg) }
{ =} { ( T_k(f) \cdot T_k(g) )_{\leq k} }
{ } { }
{ } { }
{ } { }
} {}{}{} besteht, wobei der Subskript
\mathl{{\leq k}}{} bedeutet, dass das Polynom bis zum Grad $k$ genommen wird.

}
{} {}




\inputaufgabe
{5}
{

Sei
\mathl{G \subseteq \R^n}{} \definitionsverweis {offen}{}{,}
\mathl{P \in G}{} ein Punkt und \maabbdisp {f} {G} {\R} {} eine \definitionsverweis {Funktion}{}{.} Sei
\mathl{k \in \N}{.} Zeige, dass es maximal ein Polynom
\mathl{p(x_1 , \ldots , x_n)}{} vom Grad $\leq k$ mit der Eigenschaft geben kann, dass
\mavergleichskettedisp
{\vergleichskette
{ \operatorname{lim}_{ x \rightarrow 0 } \, { \frac{ \Vert {f(x)-p(x)} \Vert }{ \Vert {x} \Vert^k } } }
{ =} {0 }
{ } { }
{ } { }
{ } { }
} {}{}{} gilt.

}
{} {}


<< | Kurs:Analysis (Osnabrück 2014-2016)/Teil II | >>

PDF-Version dieses Arbeitsblattes

Zur Vorlesung (PDF)