Zum Inhalt springen

Kurs:Analysis (Osnabrück 2021-2023)/Teil I/Arbeitsblatt 14/latex

Aus Wikiversity

\setcounter{section}{14}






\zwischenueberschrift{Übungsaufgaben}




\inputaufgabe
{}
{

Erläutere den Unterschied zwischen stetig und gleichmäßig stetig!

}
{} {}




\inputaufgabe
{}
{

Es sei \maabbeledisp {f} {\R} {\R } {x} {f(x) } {,} eine \definitionsverweis {Polynomfunktion}{}{} vom \definitionsverweis {Grad}{}{} $\geq 2$. Zeige, dass $f$ nicht \definitionsverweis {gleichmäßig stetig}{}{} ist.

}
{} {}




\inputaufgabe
{}
{

Zeige, dass die \definitionsverweis {Funktion}{}{} \maabbdisp {f} {\Q} {\R } {} mit
\mathdisp {f(x)= \begin{cases} 0\, , \text{ falls } x < \sqrt{2} \, , \\ 1\, , \text{ falls } x > \sqrt{2} \, , \end{cases}} { }
\definitionsverweis {stetig}{}{,} aber nicht \definitionsverweis {gleichmäßig stetig}{}{} ist.

}
{} {}




\inputaufgabe
{}
{

Zeige, dass eine \definitionsverweis {beschränkte}{}{,} \definitionsverweis {monotone}{}{,} \definitionsverweis {stetige Funktion}{}{} \maabbdisp {f} {I} { \R } {,} auf einen Intervall $I$ auch \definitionsverweis {gleichmäßig stetig}{}{} ist.

}
{} {}




\inputaufgabe
{}
{

Man gebe ein Beispiel einer \definitionsverweis {stetigen Funktion}{}{} \maabbdisp {f} {\R} { \R } {,} derart, dass das \definitionsverweis {Bild}{}{} von $f$ \definitionsverweis {beschränkt}{}{} ist und $f$ nicht \definitionsverweis {gleichmäßig stetig}{}{} ist.

}
{} {}




\inputaufgabe
{}
{

Man gebe ein Beispiel einer \definitionsverweis {stetigen Funktion}{}{} \maabbdisp {f} {]0,1[} { \R } {,} derart, dass das \definitionsverweis {Bild}{}{} von $f$ \definitionsverweis {beschränkt}{}{} ist und $f$ nicht \definitionsverweis {gleichmäßig stetig}{}{} ist.

}
{} {}




\inputaufgabe
{}
{

Man gebe ein Beispiel einer \definitionsverweis {gleichmäßig stetigen}{}{} \definitionsverweis {Funktion}{}{} \maabbdisp {f} {\Q} {\Q } {} derart, dass keine \definitionsverweis {stetige Fortsetzung}{}{} \maabbdisp {\tilde{f}} {\R} {\Q } {} existiert.

}
{} {}




\inputaufgabegibtloesung
{}
{

Es sei
\mathl{{ \left( x_n \right) }_{n \in \N }}{} eine \definitionsverweis {reelle Folge}{}{} und sei
\mavergleichskettedisp
{\vergleichskette
{ S }
{ =} {{ \left\{ { \frac{ 1 }{ n } } \mid n \in \N_+ \right\} } }
{ \subseteq} {\R }
{ } { }
{ } { }
} {}{}{.} Die Funktion \maabb {f} {S} {\R } {} sei durch
\mavergleichskettedisp
{\vergleichskette
{ f { \left( { \frac{ 1 }{ n } } \right) } }
{ =} { x_n }
{ } { }
{ } { }
{ } { }
} {}{}{} festgelegt. Zeige, dass $f$ genau dann \definitionsverweis {gleichmäßig stetig}{}{} ist, wenn die Folge eine \definitionsverweis {Cauchy-Folge}{}{} ist.

}
{} {}




\inputaufgabe
{}
{

Komplexer Betrag/Quadrat/Nicht Gleichmäßig stetig/Aufgabe

}
{} {}

Für die folgende Aufgabe ist Aufgabe 8.19 hilfreich.


\inputaufgabe
{}
{

Es seien
\mavergleichskette
{\vergleichskette
{a }
{ < }{b }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} und
\mavergleichskette
{\vergleichskette
{c }
{ < }{d }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} \definitionsverweis {reelle Zahlen}{}{} und sei
\mavergleichskettedisp
{\vergleichskette
{Q }
{ =} { { \left\{ z \in {\mathbb C} \mid a \leq \operatorname{Re} \, { \left( z \right) } \leq b , \, c \leq \operatorname{Im} \, { \left( z \right) } \leq d \right\} } }
{ } { }
{ } { }
{ } { }
} {}{}{} das dadurch definierte Reckteck in ${\mathbb C}$. Zeige, dass eine \definitionsverweis {stetige Funktion}{}{} \maabbdisp {f} {Q} { {\mathbb C} } {} \definitionsverweis {gleichmäßig stetig}{}{} ist.

}
{} {}


Es sei
\mathl{[a,b]}{} ein reelles Intervall und es sei eine Unterteilung
\mathdisp {a=x_0 < x_1 < x_2 < \cdots < x_{k-1} < x_k=b} { }
und Werte
\mathl{y_0,y_1,y_2 , \ldots ,y_{k-1}, y_k \in \R}{} gegeben. Unter der zugehörigen (stückweise) \definitionswort {linearen Interpolation}{} versteht man die Abbildung \maabbeledisp {g} {[a,b]} {\R } {x} { g(x) } {,} die auf jedem Teilintervall
\mathl{[x_i,x_{i+1}]}{} durch die affin-lineare Funktion gegeben ist, deren Graph die Punkte
\mathl{(x_i,y_i)}{} und
\mathl{(x_{i+1},y_{i+1})}{} durch eine gerade Strecke verbindet.


Diese Konstruktion kommt insbesondere dann zum Zuge, wenn eine gegebene Funktion \maabbeledisp {f} {[a,b]} {\R } {x} { f(x) } {,} approximiert werden soll, wobei die Unterteilung gegeben ist und man
\mathl{y_i=f(x_i)}{} nimmt.




\inputaufgabe
{}
{

Es sei
\mathl{[a,b]}{} ein reelles Intervall und es sei eine Unterteilung
\mathdisp {a=x_0 < x_1 < x_2 < \cdots < x_{k-1} < x_k=b} { }
und Werte
\mathl{y_0,y_1,y_2 , \ldots ,y_{k-1}, y_k \in \R}{} gegeben. Beschreibe die zugehörige lineare Interpolation durch funktionale Ausdrücke und zeige, dass es sich um eine stetige Funktion handelt.

}
{} {}




\inputaufgabe
{}
{

Es sei $b$ eine positive reelle Zahl und
\mavergleichskette
{\vergleichskette
{q }
{ = }{ n/m }
{ \in }{ \Q }
{ }{ }
{ }{ }
} {}{}{.} Zeige, dass die durch
\mavergleichskettedisp
{\vergleichskette
{ b^q }
{ \defeq} { { \left( b^n \right) }^{1/m} }
{ } { }
{ } { }
{ } { }
} {}{}{} definierte Zahl unabhängig von der Bruchdarstellung für $q$ ist.

}
{} {}




\inputaufgabe
{}
{

Berechne
\mathdisp {5^{ { \frac{ 3 }{ 7 } } }} { }
bis auf einen Fehler von
\mathl{{ \frac{ 1 }{ 10 } }}{.}

}
{} {}




\inputaufgabegibtloesung
{}
{

Es sei $b$ eine \definitionsverweis {positive}{}{} \definitionsverweis {reelle Zahl}{}{.} Zeige, dass die \definitionsverweis {Funktion}{}{} \maabbeledisp {f} {\Q} {\R } {q} {b^q } {,} folgende Eigenschaften besitzt. \aufzaehlungacht{Es ist
\mavergleichskette
{\vergleichskette
{ b^{q+q'} }
{ = }{ b^q \cdot b^{q'} }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} für alle
\mavergleichskette
{\vergleichskette
{q,q' }
{ \in }{ \Q }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.} }{Es ist
\mavergleichskette
{\vergleichskette
{ b^{-q} }
{ = }{ { \frac{ 1 }{ b^q } } }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.} }{Für
\mavergleichskette
{\vergleichskette
{b }
{ > }{1 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} und
\mavergleichskette
{\vergleichskette
{q }
{ > }{0 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} ist
\mavergleichskette
{\vergleichskette
{b^q }
{ > }{1 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.} }{Für
\mavergleichskette
{\vergleichskette
{b }
{ < }{1 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} und
\mavergleichskette
{\vergleichskette
{q }
{ > }{0 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} ist
\mavergleichskette
{\vergleichskette
{b^q }
{ < }{1 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.} }{Für
\mavergleichskette
{\vergleichskette
{b }
{ > }{1 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} ist $f$ \definitionsverweis {streng wachsend}{}{.} }{Für
\mavergleichskette
{\vergleichskette
{b }
{ < }{1 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} ist $f$ \definitionsverweis {streng fallend}{}{.} }{Es ist
\mavergleichskette
{\vergleichskette
{ (b^{q})^{q'} }
{ = }{ b^{ q \cdot q'} }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} für alle
\mavergleichskette
{\vergleichskette
{q,q' }
{ \in }{ \Q }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.} }{Für
\mavergleichskette
{\vergleichskette
{a }
{ \in }{\R_+ }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} ist
\mavergleichskette
{\vergleichskette
{ (ab)^q }
{ = }{ a^q \cdot b^q }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.} }

}
{} {}




\inputaufgabegibtloesung
{}
{

Entscheide, ob die \definitionsverweis {reelle Folge}{}{}
\mavergleichskettedisp
{\vergleichskette
{ x_n }
{ =} { { \frac{ 5n^{ \frac{ 3 }{ 2 } } +4 n^{ \frac{ 4 }{ 3 } } +n }{ 7n^{ \frac{ 5 }{ 3 } } +6 n^{ \frac{ 3 }{ 2 } } } } }
{ } { }
{ } { }
{ } { }
} {}{}{} \zusatzklammer {mit
\mavergleichskettek
{\vergleichskettek
{ n }
{ \geq }{ 1 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{}} {} {} in $\R$ \definitionsverweis {konvergiert}{}{} und bestimme gegebenenfalls den \definitionsverweis {Grenzwert}{}{.}

}
{} {}




\inputaufgabe
{}
{

Führe die Details im Beweis zu Lemma 14.9 für den Fall
\mathl{b <1}{} aus.

}
{} {}




\inputaufgabe
{}
{

Es sei $b$ eine \definitionsverweis {positive}{}{} \definitionsverweis {reelle Zahl}{}{.} Zeige, dass die \definitionsverweis {Exponentialfunktion}{}{} \maabbeledisp {f} {\R} {\R } {x} {b^x } {,} folgende Eigenschaften besitzt. \aufzaehlungacht{Es ist
\mavergleichskette
{\vergleichskette
{ b^{x+x'} }
{ = }{ b^x \cdot b^{x'} }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} für alle
\mavergleichskette
{\vergleichskette
{x,x' }
{ \in }{ \R }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.} }{Es ist
\mavergleichskette
{\vergleichskette
{ b^{-x} }
{ = }{ { \frac{ 1 }{ b^x } } }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.} }{Für
\mavergleichskette
{\vergleichskette
{b }
{ > }{1 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} und
\mavergleichskette
{\vergleichskette
{x }
{ > }{0 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} ist
\mavergleichskette
{\vergleichskette
{b^x }
{ > }{1 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.} }{Für
\mavergleichskette
{\vergleichskette
{b }
{ < }{1 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} und
\mavergleichskette
{\vergleichskette
{x }
{ > }{0 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} ist
\mavergleichskette
{\vergleichskette
{b^x }
{ < }{1 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.} }{Für
\mavergleichskette
{\vergleichskette
{b }
{ > }{1 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} ist $f$ \definitionsverweis {streng wachsend}{}{.} }{Für
\mavergleichskette
{\vergleichskette
{b }
{ < }{1 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} ist $f$ \definitionsverweis {streng fallend}{}{.} }{Es ist
\mavergleichskette
{\vergleichskette
{ (b^{x})^{x'} }
{ = }{ b^{ x \cdot x'} }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} für alle
\mavergleichskette
{\vergleichskette
{x,x' }
{ \in }{\R }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.} }{Für
\mavergleichskette
{\vergleichskette
{a }
{ \in }{ \R_+ }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} ist
\mavergleichskette
{\vergleichskette
{ (ab)^x }
{ = }{ a^x \cdot b^x }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.} }

}
{} {}




\inputaufgabegibtloesung
{}
{

Vergleiche die beiden Zahlen
\mathdisp {\sqrt{3}^{ - { \frac{ 9 }{ 4 } } } \text{ und } \sqrt{3}^{- \sqrt{5} }} { . }

}
{} {}




\inputaufgabe
{}
{

Vergleiche die drei Zahlen
\mathdisp {2^{\sqrt{3} }, \, 4,\, 3^{\sqrt{2} }} { . }

}
{} {}




\inputaufgabe
{}
{

Vergleiche
\mathdisp {5^{ - { \frac{ 4 }{ 7 } } } \text{ und } 5^{ - { \frac{ 5 }{ 9 } } }} { . }

}
{} {}




\inputaufgabe
{}
{

Berechne
\mathdisp {\sqrt{2}^{ \sqrt{3} }} { }
bis auf einen Fehler von
\mathl{{ \frac{ 1 }{ 10 } }}{.}

}
{} {}




\inputaufgabe
{}
{

Finde eine \definitionsverweis {rationale Zahl}{}{} zwischen den beiden Zahlen \mathkor {} {2^{\sqrt{5} }} {und} {3^{\sqrt[3]{2} }} {} folgere daraus, welche größer ist.

}
{} {}




\inputaufgabe
{}
{

Zeige, dass eine \definitionsverweis {Exponentialfunktion}{}{} \maabbeledisp {} {\R} {\R_+ } {x} {b^x } {,} aus einem \definitionsverweis {arithmetischen Mittel}{}{} ein \definitionsverweis {geometrisches Mittel}{}{} macht.

}
{} {}




\inputaufgabe
{}
{

Es sei
\mavergleichskette
{\vergleichskette
{b }
{ > }{0 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} fixiert. Zeige
\mavergleichskettedisp
{\vergleichskette
{ \operatorname{lim}_{ d \rightarrow 0 } \, b^d }
{ =} { 1 }
{ } { }
{ } { }
{ } { }
} {}{}{.}

}
{} {}




\inputaufgabegibtloesung
{}
{

Es sei \maabbdisp {f} {\R} {\R } {} eine \definitionsverweis {stetige Funktion}{}{} $\neq 0$, die die Gleichung
\mavergleichskettedisp
{\vergleichskette
{ f(x+y) }
{ =} { f(x) \cdot f(y) }
{ } { }
{ } { }
{ } { }
} {}{}{} für alle
\mavergleichskette
{\vergleichskette
{ x,y }
{ \in }{ \R }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} erfüllt. Zeige, dass $f$ eine Exponentialfunktion ist, d.h. dass es ein
\mavergleichskette
{\vergleichskette
{ b }
{ > }{ 0 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} mit
\mavergleichskette
{\vergleichskette
{f(x) }
{ = }{b^x }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} gibt.

}
{} {}




\inputaufgabegibtloesung
{}
{

Es sei
\mavergleichskettedisp
{\vergleichskette
{f(x) }
{ =} {a^x }
{ } { }
{ } { }
{ } { }
} {}{}{} eine \definitionsverweis {Exponentialfunktion}{}{} mit
\mavergleichskette
{\vergleichskette
{a }
{ \neq }{1 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.} Zu jedem
\mavergleichskette
{\vergleichskette
{ x }
{ \in }{ \R }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} definiert die Gerade durch die beiden Punkte \mathkor {} {(x,f(x))} {und} {(x+1,f(x+1))} {} einen Schnittpunkt mit der $x$-Achse, den wir mit
\mathl{s(x)}{} bezeichnen. Zeige
\mavergleichskettedisp
{\vergleichskette
{s(x+1) }
{ =} {s(x) +1 }
{ } { }
{ } { }
{ } { }
} {}{}{.} Skizziere die Situation.

}
{} {}




\inputaufgabe
{}
{

Man gebe ein Beispiel einer stetigen, streng wachsenden Funktion \maabbdisp {f} {\R} {\R_+ } {} mit
\mavergleichskette
{\vergleichskette
{ f(0) }
{ = }{ 1 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} und mit
\mavergleichskette
{\vergleichskette
{ f(x+1) }
{ = }{ 2f(x) }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} für alle
\mavergleichskette
{\vergleichskette
{ x }
{ \in }{ \R }
{ }{ }
{ }{ }
{ }{ }
} {}{}{,} die von
\mathl{2^x}{} verschieden ist.

}
{} {}

In den folgenden Aufgaben bedeutet
\mathl{C^0 ( T , {\mathbb K})}{} die Menge der stetigen Funktionen von $T$ nach ${\mathbb K}$ (für eine Teilmenge
\mathl{T\subseteq {\mathbb K}}{}) und $B \left( P,b \right)$ den abgeschlossenen Vollkreis in ${\mathbb C}$ mit Mittelpunkt $P$ und Radius $b$ \zusatzklammer {die Randpunkte gehören also dazu} {} {.}






\zwischenueberschrift{Aufgaben zum Abgeben}




\inputaufgabe
{4}
{

Zeige, dass die Quadratwurzelfunktion \maabbeledisp {} {\R_{\geq 0}} { \R_{\geq 0} } {x} { \sqrt{x} } {,} \definitionsverweis {gleichmäßig stetig}{}{} ist.

}
{} {}




\inputaufgabe
{4}
{

Wir betrachten die Abbildung \maabbeledisp {\Psi} {C^0(\R,\R) } {C^0(\Q,\R) } {f} { f{{|}}_\Q } {,} eine stetige Funktion wird also auf ihre Einschränkung auf $\Q$ abgebildet. Zeige, dass $\Psi$ injektiv, aber nicht surjektiv ist.

}
{} {}




\inputaufgabe
{3}
{

Man gebe ein Beispiel für eine \definitionsverweis {stetige}{}{} \definitionsverweis {unbeschränkte}{}{} \definitionsverweis {Funktion}{}{} \maabbdisp {f} {[0,2[} {\R } {.} Zeige, dass eine solche Funktion keine \definitionsverweis {stetige Fortsetzung}{}{} auf $[0,2]$ besitzt.

}
{} {}




\inputaufgabe
{3}
{

Zeige, dass der \definitionsverweis {Betrag}{}{} \maabbeledisp {} { {\mathbb C} } { \R } {z} { \betrag { z } } {,} \definitionsverweis {gleichmäßig stetig}{}{} ist.

}
{} {}




\inputaufgabe
{6}
{

Es sei
\mathl{[a,b]}{} ein reelles Intervall und \maabbeledisp {f} {[a,b]} {\R } {x} {f(x) } {,} eine Funktion. Zeige, dass $f$ genau dann stetig ist, wenn folgende Bedingung erfüllt ist: Zu jedem
\mathl{\epsilon > 0}{} gibt es eine Unterteilung
\mathdisp {a=x_0 < x_1 < x_2 < \cdots < x_{k-1} < x_k=b} { }
derart, dass die lineare Interpolation $g$ \zusatzklammer {zu dieser Unterteilung und zu
\mathl{f}{}} {} {} die Eigenschaft
\mathdisp {\betrag { f(x) -g(x) } \leq \epsilon \text{ für alle } x \in [a,b]} { }
erfüllt.

}
{(Bemerkung: Die vorstehende Aufgabe kann man so interpretieren, dass eine Funktion genau dann stetig ist, wenn man mit einem beliebig dünnen Stift den Funktionsgraphen durch zusammenhängende (endlich viele, nicht vertikale) Geradenstücke übermalen kann.)} {}




\inputaufgabe
{2 (1+1)}
{

Zu Beginn des Studiums ist Professor Knopfloch doppelt so schlau wie die Studenten. Innerhalb eines Studienjahres werden die Studenten um $10 \%$ schlauer. Leider baut der Professor ab und verliert pro Jahr $10 \%$ seiner Schlauheit. \aufzaehlungzwei {Zeige, dass nach drei Studienjahren der Professor immer noch schlauer als die Studenten ist. } {Zeige, dass nach vier Studienjahren die Studenten den Professor an Schlauheit übertreffen. }

}
{} {}