Kurs:Analysis (Osnabrück 2021-2023)/Teil II/Arbeitsblatt 32/latex

Aus Wikiversity

\setcounter{section}{32}






\zwischenueberschrift{Übungsaufgaben}




\inputaufgabe
{}
{

Es sei
\mathl{x \in \R}{} und betrachte die \definitionsverweis {Funktion}{}{} \maabbeledisp {f} {\R_+} {\R } {t} { f(t) = t^x e^{-t} } {.} Bestimme die \definitionsverweis {Extremwerte}{}{} dieser Funktion.

}
{} {}




\inputaufgabe
{}
{

Zeige, dass für die \definitionsverweis {Fakultätsfunktion}{}{} für
\mathl{k \in \N}{} die Beziehung
\mathdisp {\operatorname{Fak} \, { \left( { \frac{ 2k-1 }{ 2 } } \right) } = { \frac{ \prod_{i = 1}^{k} (2i-1) }{ 2^k } } \cdot \sqrt{\pi}} { }
gilt.

}
{} {}




\inputaufgabegibtloesung
{}
{

a) Zeige, dass für
\mavergleichskette
{\vergleichskette
{ x }
{ \geq }{ 1 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} die Abschätzung
\mavergleichskettedisp
{\vergleichskette
{ \int_{ 0 }^{ 1 } t^x e^{-t} \, d t }
{ \leq} {1 }
{ } { }
{ } { }
{ } { }
} {}{}{} gilt.

b) Zeige, dass die Funktion
\mathl{H(x)}{} mit
\mathdisp {H(x) = \int_{ 1 }^{ \infty } t^x e^{-t} \, d t} { }
für
\mavergleichskette
{\vergleichskette
{ x }
{ \geq }{1 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} monoton wachsend ist.

c) Zeige, dass
\mathl{10! \geq e^{11} +1}{} gilt.

d) Zeige, dass für die Fakultätsfunktion für
\mathl{x \geq 10}{} die Abschätzung
\mathdisp {\operatorname{Fak} \, (x) \geq e^x} { }
gilt.

}
{} {}




\inputaufgabe
{}
{

Zeige, dass das \definitionsverweis {Standardskalarprodukt}{}{} auf dem $\R^n$ in der Tat ein \definitionsverweis {Skalarprodukt}{}{} ist.

}
{} {}




\inputaufgabe
{}
{

Es sei $V$ ein \definitionsverweis {reeller}{}{} \definitionsverweis {Vektorraum}{}{} mit einem \definitionsverweis {Skalarprodukt}{}{} $\left\langle - , - \right\rangle$ und sei
\mavergleichskette
{\vergleichskette
{U }
{ \subseteq }{V }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} ein \definitionsverweis {Untervektorraum}{}{.} Zeige, dass die Einschränkung des Skalarproduktes auf $U$ ebenfalls ein Skalarprodukt ist.

}
{} {}




\inputaufgabe
{}
{

Es seien \mathkor {} {(V_1, \left\langle - , - \right\rangle_1 )} {und} {(V_2, \left\langle - , - \right\rangle_2)} {} zwei \definitionsverweis {euklidische Vektorräume}{}{.} Zeige, dass durch
\mathdisp {\left\langle (v_1,v_2) , (w_1,w_2) \right\rangle := \left\langle v_1 , w_1 \right\rangle_1 + \left\langle v_2 , w_2 \right\rangle_2} { }
ein \definitionsverweis {Skalarprodukt}{}{} auf dem \definitionsverweis {Produktraum}{}{}
\mathl{V_1 \times V_2}{} definiert wird.

}
{} {}




\inputaufgabegibtloesung
{}
{

Es sei $V$ ein \definitionsverweis {komplexer Vektorraum}{}{} mit einem \definitionsverweis {Skalarprodukt}{}{}
\mathl{\left\langle - , - \right\rangle}{.} Zeige, dass der \definitionsverweis {Realteil}{}{} dieses Skalarproduktes ein \definitionsverweis {Skalarprodukt}{}{} auf dem zugrunde liegenden reellen Vektorraum ist.

}
{} {}




\inputaufgabegibtloesung
{}
{

Was bedeutet die Polarisationsformel für ein reelles Skalarprodukt für die Multiplikation von reellen Zahlen?

}
{} {}




\inputaufgabe
{}
{

Es sei $V$ ein ${\mathbb K}$-\definitionsverweis {Vektorraum}{}{} mit \definitionsverweis {Skalarprodukt}{}{}
\mathl{\left\langle - , - \right\rangle}{} und der zugehörigen \definitionsverweis {Norm}{}{} $\Vert {-} \Vert$.

a) Zeige, dass bei
\mavergleichskette
{\vergleichskette
{ {\mathbb K} }
{ = }{ \R }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} die Beziehung
\mavergleichskettedisp
{\vergleichskette
{ \left\langle v , w \right\rangle }
{ =} { { \frac{ 1 }{ 2 } } { \left( \Vert {v+w} \Vert^2 - \Vert {v} \Vert^2 - \Vert {w} \Vert^2 \right) } }
{ } { }
{ } { }
{ } { }
} {}{}{} gilt.

b) Zeige, dass bei
\mavergleichskette
{\vergleichskette
{ {\mathbb K} }
{ = }{ {\mathbb C} }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} die Beziehung
\mavergleichskettedisp
{\vergleichskette
{ \left\langle v , w \right\rangle }
{ =} { { \frac{ 1 }{ 4 } } { \left( \Vert {v+w} \Vert^2 - \Vert {v-w} \Vert^2 + { \mathrm i} \Vert {v+ { \mathrm i}w} \Vert^2 - { \mathrm i} \Vert {v- { \mathrm i} w} \Vert^2 \right) } }
{ } { }
{ } { }
{ } { }
} {}{}{.}

}
{} {}




\inputaufgabe
{}
{

Es sei $V$ ein \definitionsverweis {reeller Vektorraum}{}{} mit einem \definitionsverweis {Skalarprodukt}{}{}
\mathl{\left\langle - , - \right\rangle}{.} Bestätige
\mavergleichskettedisp
{\vergleichskette
{ \Vert {x+y} \Vert^2-\Vert {x-y} \Vert^2 }
{ =} { 4 \left\langle x , y \right\rangle }
{ } { }
{ } { }
{ } { }
} {}{}{.}

}
{} {}




\inputaufgabe
{}
{

Es seien \maabbdisp {f,g} {[0,1]} {\R } {} mit
\mavergleichskette
{\vergleichskette
{f(x) }
{ = }{-x^2+1 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} und
\mavergleichskette
{\vergleichskette
{g(x) }
{ = }{x^2+x+3 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.} Berechne $\left\langle f , g \right\rangle$ im Sinne von Beispiel 32.9.

}
{} {}




\inputaufgabe
{}
{

Es sei
\mathl{[a,b]}{} ein abgeschlossenes reelles Intervall mit
\mathl{a<b}{} und sei
\mavergleichskette
{\vergleichskette
{V }
{ = }{ { \left\{ f :[a,b] \rightarrow \R \mid f \text{ stetig} \right\} } }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.} Zu
\mathl{n \in \N_+}{} und
\mathl{f,g \in V}{} sei
\mavergleichskettedisp
{\vergleichskette
{ \left\langle f , g \right\rangle_n }
{ \defeq} { \sum_{i = 0 }^n f { \left( a+ i { \frac{ b-a }{ n } } \right) } g { \left( a+i { \frac{ b-a }{ n } } \right) } }
{ } { }
{ } { }
{ } { }
} {}{}{.} Welche Eigenschaften eines \definitionsverweis {Skalarproduktes}{}{} erfüllt
\mathl{\left\langle - , - \right\rangle_n}{,} welche nicht? Welche Beziehung besteht zwischen
\mathl{\left\langle - , - \right\rangle_n}{} und dem Skalarprodukt aus Beispiel 32.9?

}
{} {}




\inputaufgabe
{}
{

Es sei $V$ ein \definitionsverweis {reeller Vektorraum}{}{} mit einem \definitionsverweis {Skalarprodukt}{}{}
\mathl{\left\langle - , - \right\rangle}{.} Zeige, dass in der Abschätzung
\mavergleichskettedisp
{\vergleichskette
{ \betrag { \left\langle v , w \right\rangle } }
{ \leq} { \Vert {v} \Vert \cdot \Vert {w} \Vert }
{ } { }
{ } { }
{ } { }
} {}{}{} von Cauchy-Schwarz genau dann die Gleichheit gilt, wenn \mathkor {} {v} {und} {w} {} \definitionsverweis {linear abhängig}{}{} sind.

}
{} {}




\inputaufgabegibtloesung
{}
{

Zeige, dass für
\mavergleichskette
{\vergleichskette
{ u,v_1,v_2 }
{ \in }{ \R^n }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} die Abschätzung
\mavergleichskettedisp
{\vergleichskette
{ \betrag { e^{ { \mathrm i} \left\langle u , v_1 \right\rangle } - e^{ { \mathrm i} \left\langle u , v_2 \right\rangle } } }
{ \leq} { \Vert {u} \Vert \cdot \Vert {v_1-v_2} \Vert }
{ } { }
{ } { }
{ } { }
} {}{}{} gilt.

}
{} {Tipp: Siehe Aufgabe 21.6.}

Zwei Vektoren
\mavergleichskette
{\vergleichskette
{ v,w }
{ \in }{V }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} heißen \stichwort {orthogonal} {} \zusatzklammer {oder \stichwort {senkrecht} {}} {} {} zueinander, wenn
\mavergleichskette
{\vergleichskette
{ \left\langle v , w \right\rangle }
{ = }{ 0 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} ist. Nach Bemerkung 32.12 beträgt dann der Winkel zwischen ihnen $\pi/2$.




\inputaufgabe
{}
{

Bestimme, welche der folgenden Vektoren im $\R^3$ zueinander \definitionsverweis {orthogonal}{}{} bezüglich des \definitionsverweis {Standardskalarproduktes}{}{} sind.
\mathdisp {\begin{pmatrix} 6 \\1\\ 5 \end{pmatrix} ,\, \begin{pmatrix} 3 \\-8\\ -2 \end{pmatrix} ,\, \begin{pmatrix} 0 \\-1\\ 4 \end{pmatrix} ,\, \begin{pmatrix} -5 \\4\\ -1 \end{pmatrix}} { . }

}
{} {}




\inputaufgabe
{}
{

Es sei $V$ ein \definitionsverweis {reeller}{}{} \definitionsverweis {Vektorraum}{}{} mit einem \definitionsverweis {Skalarprodukt}{}{} $\left\langle - , - \right\rangle$. Beweise den \stichwort {Satz des Pythagoras} {:} Für zwei Vektoren $v,w \in V$, die \definitionsverweis {senkrecht}{}{} aufeinander stehen, gilt die Beziehung
\mavergleichskettedisp
{\vergleichskette
{ \Vert {v+w} \Vert^2 }
{ =} { \Vert {v} \Vert^2 + \Vert {w} \Vert^2 }
{ } { }
{ } { }
{ } { }
} {}{}{.}

}
{} {}




\inputaufgabe
{}
{

Welche elementargeometrischen Beweise für den Satz des Pythagoras kennen Sie?

}
{} {}

Ein Skalarprodukt ermöglicht es, von Orthonormalbasen zu sprechen.

Es sei $V$ ein \definitionsverweis {euklidischer Vektorraum}{}{.} Eine \definitionsverweis {Basis}{}{}
\mathl{v_1 , \ldots , v_n}{} von $V$ heißt \definitionswort {Orthonormalbasis}{,} wenn
\mathdisp {\left\langle v_i , v_i \right\rangle= 1 \text{ für } \text{alle } i \text{ und } \left\langle v_i , v_j \right\rangle= 0 \text{ für } i \neq j} { }
gilt.





\inputaufgabe
{}
{

Es sei $V$ ein reeller \definitionsverweis {Vektorraum}{}{} mit einem \definitionsverweis {Skalarprodukt}{}{}
\mathl{\left\langle - , - \right\rangle}{} und sei
\mathbed {u_i} {}
{i \in I} {}
{} {} {} {,} eine \definitionsverweis {Orthonormalbasis}{}{} von $V$. Zeige, dass für Vektoren
\mathl{v= \sum_{i \in I}a_i u_i}{} und
\mathl{w= \sum_{i \in I}b_i u_i}{} die Gleichheit
\mavergleichskettedisp
{\vergleichskette
{ \left\langle v , w \right\rangle }
{ =} { \sum_{i \in I} a_ib_i }
{ } { }
{ } { }
{ } { }
} {}{}{} gilt.

}
{} {}




\inputaufgabe
{}
{

Es sei $V$ ein \definitionsverweis {Vektorraum}{}{} über ${\mathbb K}$ mit einem \definitionsverweis {Skalarprodukt}{}{}
\mathl{\left\langle - , - \right\rangle}{.} Zeige, dass der zugehörige \definitionsverweis {Abstand}{}{} die folgenden Eigenschaften besitzt \zusatzklammer {dabei sind $u,v,w \in V$} {} {.} \aufzaehlungvier{Es ist $d( v , w ) \geq 0$. }{Es ist $d( v , w ) = 0$ genau dann, wenn
\mathl{v=w}{.} }{Es ist $d( v , w ) = d( w , v )$. }{Es ist
\mathdisp {d( u , w ) \leq d( u , v ) + d( v , w )} { . }
}

}
{} {}




\inputaufgabe
{}
{

Es sei $V$ ein $\R$-\definitionsverweis {Vektorraum}{}{} mit einem \definitionsverweis {Skalarprodukt}{}{}
\mathl{\left\langle - , - \right\rangle}{} und seien
\mavergleichskette
{\vergleichskette
{ u,v }
{ \in }{V }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} Vektoren. Zeige, dass $u$ genau dann \definitionsverweis {senkrecht}{}{} auf $v$ steht, wenn die Abstandsgleichung
\mavergleichskettedisp
{\vergleichskette
{ d(u,v) }
{ =} { d(u,-v) }
{ } { }
{ } { }
{ } { }
} {}{}{} gilt.

}
{} {}




\inputaufgabe
{}
{

Zeige, dass die \definitionsverweis {Norm}{}{} zum \definitionsverweis {komplexen Standardskalarprodukt}{}{} auf ${\mathbb C}$ einfach der \definitionsverweis {komplexe Betrag}{}{} ist.

}
{} {}




\inputaufgabe
{}
{

Es sei $V$ ein \definitionsverweis {komplexer Vektorraum}{}{} mit einem \definitionsverweis {Skalarprodukt}{}{}
\mathl{\left\langle - , - \right\rangle}{.} Zeige, dass die \definitionsverweis {Norm}{}{} zu diesem Skalarprodukt mit der Norm übereinstimmt, die man erhält, wenn man $V$ als reellen Vektorraum mit dem zugehörigen reellen Skalarprodukt auffasst.

}
{} {}




\inputaufgabegibtloesung
{}
{

Zeige, dass die Funktionen \maabbdisp {f_m} { [0,1]} {{\mathbb C} } {} mit
\mavergleichskettedisp
{\vergleichskette
{f_m(x) }
{ \defeq} { e^{2 \pi { \mathrm i} m x } }
{ } { }
{ } { }
{ } { }
} {}{}{} zu
\mathl{m \in \Z}{} im Raum der stetigen Funktionen von $[0,1]$ nach ${\mathbb C}$ ein \definitionsverweis {Orthonormalsystem}{}{} bezüglich des durch
\mavergleichskettedisp
{\vergleichskette
{ \left\langle f , g \right\rangle }
{ \defeq} { \int_0^1 f \overline{ g } dx }
{ } { }
{ } { }
{ } { }
} {}{}{} gegebenen \definitionsverweis {Skalarproduktes}{}{} bilden. Verwende dabei Grundtatsachen über die komplexe Exponentialfunktion.

}
{} {}






\zwischenueberschrift{Aufgaben zum Abgeben}




\inputaufgabe
{2}
{

Zeige, dass für die \definitionsverweis {Fakultätsfunktion}{}{} die Beziehung
\mavergleichskettedisp
{\vergleichskette
{ \operatorname{Fak} \, (x) }
{ =} { \int_{ 0 }^{ 1 } (- \ln t)^x \, d t }
{ } { }
{ } { }
{ } { }
} {}{}{} gilt.

}
{} {}




\inputaufgabe
{3}
{

Es sei $V$ ein \definitionsverweis {Vektorraum}{}{} über $\R$ mit einem \definitionsverweis {Skalarprodukt}{}{}
\mathl{\left\langle - , - \right\rangle}{} und der zugehörigen \definitionsverweis {Norm}{}{}
\mathl{\Vert {-} \Vert}{.} Zeige, dass die sogenannte \stichwort {Parallelogrammgleichung} {}
\mavergleichskettedisp
{\vergleichskette
{ \Vert {v+w} \Vert ^2 + \Vert {v-w} \Vert ^2 }
{ =} { 2 \Vert {v} \Vert ^2 +2 \Vert {w} \Vert ^2 }
{ } { }
{ } { }
{ } { }
} {}{}{} gilt.

}
{} {}




\inputaufgabe
{3}
{

Es sei $V$ ein \definitionsverweis {euklidischer Vektorraum}{}{} und sei
\mavergleichskette
{\vergleichskette
{ u_1 , \ldots , u_n }
{ \in }{V }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} eine \definitionsverweis {Orthonormalbasis}{}{} von $V$. Zeige, dass für jeden Vektor
\mavergleichskette
{\vergleichskette
{v }
{ \in }{V }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} die Beziehung
\mavergleichskettedisp
{\vergleichskette
{v }
{ =} { \sum_{ i = 1 }^{ n } \left\langle v , u_i \right\rangle u_i }
{ } { }
{ } { }
{ } { }
} {}{}{} gilt.

}
{} {}




\inputaufgabe
{4}
{

Es seien \maabbdisp {f,g} {[0,1]} {\R } {} mit
\mavergleichskette
{\vergleichskette
{f(x) }
{ = }{2x^3-x+3 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} und
\mavergleichskette
{\vergleichskette
{g(x) }
{ = }{-5x^2+4x-7 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.} Berechne
\mathdisp {\left\langle f , g \right\rangle , \, \Vert {f} \Vert , \, \Vert {g} \Vert} { }
im Sinne von Beispiel 32.9.

}
{} {}