Kurs:Grundkurs Mathematik (Osnabrück 2016-2017)/Teil I/Arbeitsblatt 5

Aus Wikiversity
Wechseln zu: Navigation, Suche



Die Pausenaufgabe

Aufgabe

Zähle im Zweiersystem bis .




Übungsaufgaben

Aufgabe

Erstelle das „kleine Einsnachnull“.


Deckel-koeln.png

Aufgabe

Warum macht der Kellner Striche auf den Bierdeckel, statt Zahlen drauf zu schreiben?


Aufgabe

Wir zählen

  1. Was ist überübermorgen von morgen?
  2. Was ist morgen von morgen von morgen von übermorgen?
  3. Was ist heute von überüberübermorgen?
  4. Welche Tage sind ein morgen eines Tages der Zählliste?


Aufgabe

Der Alleinherrscher herrscht mit großer Willkür und möchte im Alltag des Volkes präsent sein. Deshalb schafft er das übliche Zählen ab und ersetzt es durch die Namen seiner Söhne gemäß der Geburtsreihenfolge. Es soll also hinfort (nach der Null) mit

gezählt werden, danach soll es mit Überpeter, Überheinz, ... , Überkarl, Überüberpeter, ..., Überüberkarl, Überüberüberpeter, ... weitergehen. Ist dies ein mathematisch sinnvollen Zählen? Benenne die Dezimalzahl in diesem Sohnsystem. Welche Dezimalzahl verbirgt sich hinter Überüberüberüberüberüberüberalbrecht?


Aufgabe

Intelligente zählbegabte Lebewesen aus einer fernen Galaxie besuchen die Erde. Sie besitzen nur ein Auge, dass immer nach links schaut. Sie lernen somit das menschliche Zählen anhand der linken Straßenseiten (bei wechselseitiger Nummerierung) kennen und berichten zuhause: „Die Menschen auf der Erde zählen

und so weiter. Es treten vorne Ziffern auf, die als Endziffer nicht erlaubt sind. Die Idee einer scheinen sie nicht zu kennen“.

  1. Kann man mit diesem Straßenseitensystem zählen?
  2. Welche Hausnummer bekommt das -te Haus auf der linken (ungeraden) Straßenseite, welche Hausnummer bekommt das -te Haus auf der rechten (geraden) Straßenseite?
  3. Welche Zahlen im Fünfersystem stimmen inhaltlich mit den Straßenseitenzahlen überein?
  4. Was ist der Nachteil des Straßenseitensystems gegenüber dem Fünfersystem?
  5. Wäre es für das Zählen ein Nachteil, wenn wir zählen würden? Hat es andere Nachteile?


Aufgabe

Im Euromünzensystem wird so gezählt, dass die Koeffizienten (also ) der minimalen Darstellung einer Zahl im Sinne von Satz 2.1 in absteigender Wertreihenfolge angegeben werden. Bestimme die zehn Nachfolger von


Die folgende Aufgabe sollte man nicht bearbeiten, sondern zum Anlass nehmen, sich über unser Ziffernsystem zu freuen.

Aufgabe

Man definiere, welche endlichen Zeichenketten aus im römischen Zahlsystem (mit oder ohne Subtraktionsregel) erlaubt sind und welche nicht. Man erstelle einen Algorithmus, der zu jeder erlaubten römischen Zahl den Nachfolger berechnet.


Aufgabe

Es sei die Menge aller Telefonnummern in einer Stadt. Besitzt die Nachfolgerfunktion auf dieser Menge eine sinnvolle Interpretation?


Aufgabe

Bestimme die Menge in den in der Vorlesung gegebenen Zählbeispielen.


SunflowerModel.svg

Aufgabe

Bestimme die Anzahl der Punkte im Bild nebenan.


Aufgabe

Bestimme die Anzahl der folgenden Mengen.

  1. ,
  2. ,
  3. .


Aufgabe

Man beschreibe eine Bijektion zwischen und .


Aufgabe

Beschreibe mit Quantoren die Eigenschaft einer Abbildung

injektiv bzw. surjektiv zu sein.


Aufgabe

Eine Funktion

heißt streng wachsend, wenn für alle mit auch gilt. Zeige, dass eine streng wachsende Funktion injektiv ist.




Aufgaben zum Abgeben

Aufgabe (2 Punkte)

Im Euromünzensystem wird so gezählt, dass die Koeffizienten (also ) der minimalen Darstellung einer Zahl im Sinne von Satz 2.1 in absteigender Wertreihenfolge angegeben werden. Bestimme die zehn Nachfolger von


Aufgabe (5 (0.5+0.5+1+2+1) Punkte)

Ein Teil der Schüler und Schülerinnen der Klasse 4c sind auf einer Wattwanderung, und zwar

Sie werden von Wattführer Heino und Frau Maier-Sengupta begleitet. Nach einer scharfen Wende um eine unübersichtliche Düne herum zählen die beiden Aufsichtspersonen die Gruppe durch. Heino zählt

und Maier-Sengupta zählt

Es sind also alle Kinder da.

  1. Welche Nummer gibt Heino demjenigen Kind, das von Maier-Sengupta die Nummer bekommt?
  2. Welche(s) Kind(er) bekommen von beiden die gleiche Nummer?
  3. Welche(s) Kind(er) bekommen von Heino eine höhere Nummer als von Maier-Sengupta?
  4. Gabi (G) denkt sich das folgende Spiel aus: Jedes Kind muss demjenigen Kind, dessen Heino-Nummer gleich seiner (des ersten Kindes) Maier-Sengupta-Nummer ist, eine Muschel schenken. Welche Schenkzykel entstehen dabei?
  5. Ist die durch

    gegebene Abbildung eine Nummerierung der Schülermenge?


Aufgabe (3 (2+1) Punkte)

Mustafa Müller und Heinz Ngolo waren beim Spiel Borussia Dortmund gegen Bayern München. Zum Glück hat Dortmund zu gewonnen, daher ist gute Stimmung im Fanbus auf der Heimreise. Die Torfolge war

Die beiden überlegen sich die folgenden Fragen.

  1. Wie viele mögliche Torreihenfolgen gibt es bei einem -Sieg?
  2. Wie viele mögliche Torreihenfolgen gibt es bei einem -Sieg, wenn man noch die Halbzeit mitberücksichtigt?


Aufgabe (2 Punkte)

Bestimme, wie viele echte Potenzen (also Zahlen der Form mit ) es zwischen und gibt.


Aufgabe (3 Punkte)

Wir betrachten eine digitale Uhr, die Stunden, Minuten und Sekunden anzeigt. Definiere die Nachfolgerabbildung, die zu jeder Zeitangabe die Zeitangabe der nächsten Sekunde berechnet.



<< | Kurs:Grundkurs Mathematik (Osnabrück 2016-2017)/Teil I | >>

PDF-Version dieses Arbeitsblattes

Zur Vorlesung (PDF)