Kurs:Lineare Algebra (Osnabrück 2015-2016)/Teil I/Arbeitsblatt 3/latex

Aus Wikiversity

\setcounter{section}{3}






\zwischenueberschrift{Die Pausenaufgabe}




\inputaufgabe
{}
{

Formuliere die \stichwort {binomischen Formeln} {} für zwei reelle Zahlen und beweise die Formeln mit Hilfe des Distributivgesetzes.

}
{} {}






\zwischenueberschrift{Übungsaufgaben}




\inputaufgabe
{}
{

Betrachte die ganzen Zahlen $\Z$ mit der Differenz als Verknüpfung, also die Abbildung \maabbeledisp {} {\Z \times \Z} {\Z } {(a,b)} {a-b } {.} Besitzt diese Verknüpfung ein neutrales Element? Ist diese Verknüpfung assoziativ, kommutativ, gibt es zu jedem Element ein inverses Element?

}
{} {}




\inputaufgabe
{}
{

Man untersuche die \definitionsverweis {Verknüpfung}{}{} \maabbeledisp {} {\R_{\geq 0} \times \R_{\geq 0} } {\R_{\geq 0} } {(x,y)} { \operatorname{min} \, (x,y) } {,} auf Assoziativität, Kommutativität, die Existenz von einem neutralen Element und die Existenz von inversen Elementen.

}
{} {}




\inputaufgabe
{}
{

Es sei $S$ eine Menge und
\mavergleichskettedisp
{\vergleichskette
{G }
{ =} {{ \left\{ F:S \rightarrow S \mid F \text{ bijektiv} \right\} } }
{ } { }
{ } { }
{ } { }
} {}{}{.} Zeige, dass $G$ mit der \definitionsverweis {Hintereinanderschaltung}{}{} von \definitionsverweis {Abbildungen}{}{} eine \definitionsverweis {Gruppe}{}{} ist.

}
{} {}




\inputaufgabegibtloesung
{}
{

Es sei $G$ eine \definitionsverweis {Gruppe}{}{.} Zeige, dass
\mavergleichskettedisp
{\vergleichskette
{ { \left( x^{-1} \right) }^{-1} }
{ =} {x }
{ } { }
{ } { }
{ } { }
} {}{}{} für alle
\mathl{x \in G}{} ist.

}
{} {}




\inputaufgabe
{}
{

Es sei $G$ eine \definitionsverweis {Gruppe}{}{} und $x,y \in G$. Drücke das Inverse von $xy$ durch die Inversen von $x$ und $y$ aus.

}
{} {}




\inputaufgabe
{}
{

Man konstruiere eine \definitionsverweis {Gruppe}{}{} mit drei Elementen.

}
{} {}




\inputaufgabe
{}
{

Es sei $R$ ein \definitionsverweis {Ring}{}{} und seien $\spadesuit, \heartsuit$ und $\clubsuit$ Elemente in $R$. Berechne das Produkt
\mathdisp {{ \left( \spadesuit^2-3 \heartsuit \clubsuit \heartsuit-2\clubsuit \heartsuit^2+4 \spadesuit \heartsuit^2 \right) } { \left( 2 \spadesuit \heartsuit^3 \spadesuit-\clubsuit^2 \spadesuit \heartsuit \spadesuit \right) } { \left( 1-3\clubsuit \heartsuit \spadesuit \clubsuit^2\heartsuit \right) }} { . }
Wie lautet das Ergebnis, wenn der Ring \definitionsverweis {kommutativ}{}{} ist?

}
{} {}




\inputaufgabe
{}
{

Es sei $R$ ein \definitionsverweis {kommutativer Ring}{}{} und
\mathl{f , a_i, b_j \in R}{.} Zeige die folgenden Gleichungen:
\mathdisp {\sum_{ i = 0 }^{ n } a_{ i } f^{ i} + \sum_{ j = 0 }^{ m } b_{ j } f^{ j} = \sum_{k=0}^{ \max ( n,m) } ( a _{ k}+b _{ k} ) f^{ k }} { }
und
\mathdisp {{ \left( \sum_{ i = 0 }^{ n } a_{ i } f^{ i} \right) } \cdot { \left( \sum_{ j = 0 }^{ m } b_{ j } f^{ j} \right) } = \sum_{ k = 0 }^{ n+m } c_{ k } f^{ k} \text{ mit } c_{ k} =\sum_{ r= 0}^{ k } a_{ r } b_{ k - r }} { . }

}
{} {}




\inputaufgabegibtloesung
{}
{

Beweise die allgemeine binomische Formel, also die Formel
\mathdisp {( a + b )^{n} = \sum_{ k=0 } ^{ n } \binom { n } { k } a^{k} b^{n - k}} { }
für
\mathl{n \in \N}{} und beliebige Elemente
\mathl{a,b \in K}{} in einem Körper $K$.

}
{} {}




\inputaufgabe
{}
{

Es sei $R$ ein \definitionsverweis {Ring}{}{} und $M$ eine Menge. Definiere auf der Abbildungsmenge
\mathdisp {A= { \left\{ f:M \rightarrow R \mid f \text{ Abbildung} \right\} }} { }
eine Ringstruktur.

}
{} {}




\inputaufgabe
{}
{

Es seien $x,y,z,w$ Elemente in einem \definitionsverweis {Körper}{}{,} wobei $z$ und $w$ nicht $0$ seien. Beweise die folgenden Bruchrechenregeln.

\aufzaehlungacht{
\mavergleichskettedisp
{\vergleichskette
{ { \frac{ x }{ 1 } } }
{ =} { x }
{ } { }
{ } { }
{ } { }
} {}{}{,} }{
\mavergleichskettedisp
{\vergleichskette
{ { \frac{ 1 }{ z } } }
{ =} { z^{-1} }
{ } { }
{ } { }
{ } { }
} {}{}{,} }{
\mavergleichskettedisp
{\vergleichskette
{ { \frac{ 1 }{ -1 } } }
{ =} { -1 }
{ } { }
{ } { }
{ } { }
} {}{}{,} }{
\mavergleichskettedisp
{\vergleichskette
{ { \frac{ 0 }{ z } } }
{ =} {0 }
{ } { }
{ } { }
{ } { }
} {}{}{,} }{
\mavergleichskettedisp
{\vergleichskette
{ { \frac{ z }{ z } } }
{ =} { 1 }
{ } { }
{ } { }
{ } { }
} {}{}{,} }{
\mavergleichskettedisp
{\vergleichskette
{ { \frac{ x }{ z } } }
{ =} { { \frac{ xw }{ zw } } }
{ } { }
{ } { }
{ } { }
} {}{}{,} }{
\mavergleichskettedisp
{\vergleichskette
{ { \frac{ x }{ z } } \cdot { \frac{ y }{ w } } }
{ =} { { \frac{ xy }{ zw } } }
{ } { }
{ } { }
{ } { }
} {}{}{,} }{
\mavergleichskettedisp
{\vergleichskette
{ { \frac{ x }{ z } } + { \frac{ y }{ w } } }
{ =} { { \frac{ xw+yz }{ zw } } }
{ } { }
{ } { }
{ } { }
} {}{}{.} } Gilt die zu (8) analoge Formel, die entsteht, wenn man die Addition mit der Multiplikation vertauscht, also
\mavergleichskettedisp
{\vergleichskette
{ (x-z) \cdot (y-w) }
{ =} { (x+w)(y+z)-(z+w) }
{ } { }
{ } { }
{ } { }
} {}{}{?} Zeige, dass die \anfuehrung{beliebte Formel}{}
\mavergleichskettedisp
{\vergleichskette
{ { \frac{ x }{ z } } + { \frac{ y }{ w } } }
{ =} {{ \frac{ x+y }{ z+w } } }
{ } { }
{ } { }
{ } { }
} {}{}{} nicht gilt.

}
{} {}




\inputaufgabe
{}
{

Zeige, dass in einem \definitionsverweis {Körper}{}{} das \anfuehrung{umgekehrte Distributivgesetz}{,} also
\mavergleichskettedisp
{\vergleichskette
{ a+(bc) }
{ =} { (a+b) \cdot (a+c) }
{ } { }
{ } { }
{ } { }
} {}{}{,} nicht gilt.

}
{} {}




\inputaufgabe
{}
{

Beschreibe und beweise Regeln für die Addition und die Multiplikation von geraden und ungeraden ganzen Zahlen. Man definiere auf der zweielementigen Menge
\mathdisp {\{G,U\}} { }
eine \anfuehrung{Addition}{} und eine \anfuehrung{Multiplikation}{,} die diese Regeln \anfuehrung{repräsentieren}{.}

}
{} {}




\inputaufgabe
{}
{

Zeige, dass die einelementige Menge $\{0\}$ alle Körperaxiome erfüllt mit der einzigen Ausnahme, dass $0=1$ ist.

}
{} {}




\inputaufgabe
{}
{

Es sei $K$ ein \definitionsverweis {Körper}{}{.} Zeige, dass man jeder natürlichen Zahl
\mavergleichskette
{\vergleichskette
{n }
{ \in }{ \N }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} ein Körperelement $n_K$ zuordnen kann, so dass $0_K$ das Nullelement in $K$ und $1_K$ das Einselement in $K$ ist und so dass
\mavergleichskettedisp
{\vergleichskette
{ (n+1)_K }
{ =} { n_K+1_K }
{ } { }
{ } { }
{ } { }
} {}{}{} gilt. Zeige, dass diese Zuordnung die Eigenschaften
\mathdisp {(n+m)_K = n_K + m_K \text{ und } (nm)_K = n_K \cdot m_K} { }
besitzt.

Erweitere diese Zuordnung auf die ganzen Zahlen $\Z$ und zeige, dass die angeführten strukturellen Eigenschaften ebenfalls gelten.

}
{} {}




\inputaufgabe
{}
{

Skizziere den \definitionsverweis {Graphen}{}{} der reellen Addition \maabbeledisp {+} {\R \times \R} {\R } {(x,y)} {x+y } {,} und den Graphen der reellen Multiplikation \maabbeledisp {\cdot} {\R \times \R} {\R } {(x,y)} {x \cdot y } {.}

}
{} {}




\inputaufgabe
{}
{

Es sei $K$ ein \definitionsverweis {Körper}{}{} mit
\mavergleichskette
{\vergleichskette
{2 }
{ \neq }{0 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.} Zeige, dass für
\mavergleichskette
{\vergleichskette
{ f,g }
{ \in }{K }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} die Beziehung
\mavergleichskettedisp
{\vergleichskette
{fg }
{ =} { { \frac{ 1 }{ 4 } } { \left( { \left( f+g \right) }^2 - { \left( f-g \right) }^2 \right) } }
{ } { }
{ } { }
{ } { }
} {}{}{} gilt.

}
{} {}






\zwischenueberschrift{Aufgaben zum Abgeben}




\inputaufgabe
{3}
{

Es sei $M$ eine Menge. Zeige, dass die \definitionsverweis {Potenzmenge}{}{} $\mathfrak {P} \, (M )$ mit dem Durchschnitt $\cap$ als Multiplikation und der \definitionsverweis {symmetrischen Differenz}{}{}
\mavergleichskettedisp
{\vergleichskette
{ A \triangle B }
{ =} {(A \setminus B) \cup (B \setminus A) }
{ } { }
{ } { }
{ } { }
} {}{}{} als Addition \zusatzklammer {mit welchen neutralen Elementen} {?} {} ein \definitionsverweis {kommutativer Ring}{}{} ist.

}
{} {}




\inputaufgabe
{2}
{

Zeige für einen \definitionsverweis {Körper}{}{} $K$ die folgenden Eigenschaften.

(1) Für jedes
\mathl{a \in K}{} ist die \definitionsverweis {Abbildung}{}{} \maabbeledisp {\alpha_a} {K} {K } {x} {x+a } {,} \definitionsverweis {bijektiv}{}{.}

(2) Für jedes
\mathbed {b \in K} {}
{b \neq 0} {}
{} {} {} {,} ist die Abbildung \maabbeledisp {\mu_b} {K} {K } {x} {bx } {,} bijektiv.

}
{} {}




\inputaufgabe
{3}
{

Zeige, dass die \anfuehrung{Rechenregel}{}
\mavergleichskettedisp
{\vergleichskette
{ { \frac{ a }{ b } } + { \frac{ c }{ d } } }
{ =} { { \frac{ a+c }{ b+d } } }
{ } { }
{ } { }
{ } { }
} {}{}{} bei
\mavergleichskette
{\vergleichskette
{ a,c }
{ \in }{ \N_+ }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} \zusatzklammer {und
\mavergleichskette
{\vergleichskette
{ b, d, b+d }
{ \in }{ \Z \setminus \{0\} }
{ }{ }
{ }{ }
{ }{ }
} {}{}{}} {} {} niemals gilt. Man gebe ein Beispiel mit
\mavergleichskette
{\vergleichskette
{ a,b,c,d,b+d }
{ \neq }{ 0 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{,} wo diese Regel gilt.

}
{} {}




\inputaufgabe
{6}
{

Beweise das allgemeine Distributivgesetz für einen \definitionsverweis {Körper}{}{.}

}
{} {}




\inputaufgabe
{4}
{

Wir betrachten die Menge
\mavergleichskettedisp
{\vergleichskette
{K }
{ =} {\Q \times \Q }
{ =} {{ \left\{ (a,b) \mid a,b \in \Q \right\} } }
{ } { }
{ } { }
} {}{}{} mit den beiden ausgezeichneten Elementen
\mathdisp {0=(0,0) \text{ und } 1=(1,0)} { , }
der Addition
\mavergleichskettedisp
{\vergleichskette
{ (a,b)+(c,d) }
{ \defeq} {(a+c, b+d) }
{ } { }
{ } { }
{ } { }
} {}{}{} und der Multiplikation
\mavergleichskettedisp
{\vergleichskette
{ (a,b) \cdot (c,d) }
{ \defeq} {(ac-bd, ad+bc) }
{ } { }
{ } { }
{ } { }
} {}{}{.} Zeige, dass $K$ mit diesen Operationen ein \definitionsverweis {Körper}{}{} ist.

}
{} {}


<< | Kurs:Lineare Algebra (Osnabrück 2015-2016)/Teil I | >>

PDF-Version dieses Arbeitsblattes

Zur Vorlesung (PDF)