Kurs:Lineare Algebra (Osnabrück 2015-2016)/Teil II/Arbeitsblatt 38/latex

Aus Wikiversity

\setcounter{section}{38}






\zwischenueberschrift{Übungsaufgaben}




\inputaufgabe
{}
{

Es sei
\mathl{\left\langle - , - \right\rangle}{} eine \definitionsverweis {Bilinearform}{}{} auf einem $K$-\definitionsverweis {Vektorraum}{}{} $V$. Zeige
\mavergleichskettedisp
{\vergleichskette
{ \left\langle 0 , v \right\rangle }
{ =} { 0 }
{ } { }
{ } { }
{ } { }
} {}{}{} für alle
\mathl{v \in V}{.}

}
{} {}




\inputaufgabe
{}
{

Überprüfe, ob die folgenden Abbildungen \maabbdisp {} {\R^2 \times \R^2} {\R } {} \definitionsverweis {Bilinearformen}{}{} sind. \aufzaehlungvier{
\mavergleichskettedisp
{\vergleichskette
{\Psi(v,w) }
{ =} { \Vert { v} \Vert }
{ } { }
{ } { }
{ } { }
} {}{}{.} }{
\mavergleichskettedisp
{\vergleichskette
{\Psi(v,w) }
{ =} { \Vert { v- w} \Vert }
{ } { }
{ } { }
{ } { }
} {}{}{.} }{
\mavergleichskettedisp
{\vergleichskette
{\Psi(v,w) }
{ =} { \Vert {v} \Vert \cdot \Vert {w} \Vert }
{ } { }
{ } { }
{ } { }
} {}{}{.} }{
\mavergleichskettedisp
{\vergleichskette
{\Psi(v,w) }
{ =} { \angle ( v, w) }
{ } { }
{ } { }
{ } { }
} {}{}{.} }

}
{} {}




\inputaufgabe
{}
{

Zeige, dass ein \definitionsverweis {Skalarprodukt}{}{} eine \definitionsverweis {nicht-ausgeartete}{}{} \definitionsverweis {Bilinearform}{}{} ist.

}
{} {}




\inputaufgabe
{}
{

Es sei
\mathl{\left\langle - , - \right\rangle}{} eine \definitionsverweis {Bilinearform}{}{} auf einem \definitionsverweis {endlichdimensionalen}{}{} $K$-\definitionsverweis {Vektorraum}{}{.} Zeige, dass die Form genau dann linksausgeartet ist, wenn sie rechtsausgeartet ist.

}
{} {}




\inputaufgabe
{}
{

Betrachte die \definitionsverweis {Linearform}{}{} \maabbeledisp {L} {\R^3} {\R } {(x,y,z)} {x+3y-4z } {.} \aufzaehlungzwei {Bestimme den Vektor
\mathl{u \in \R^3}{} mit der Eigenschaft
\mathdisp {\left\langle u , v \right\rangle = L(v) \text { für alle } v \in \R^3} { , }
wobei
\mathl{\left\langle - , - \right\rangle}{} das \definitionsverweis {Standardskalarprodukt}{}{} bezeichnet. } {Es sei
\mathdisp {E= { \left\{ (x,y,z) \mid 3x-2y-5z = 0 \right\} } \subset \R^3} { }
und es sei
\mathl{\varphi=L {{|}}_E}{} die \definitionsverweis {Einschränkung}{}{} von $L$ auf $E$. Bestimme den Vektor
\mathl{w \in E}{} mit der Eigenschaft
\mathdisp {\left\langle w , v \right\rangle = \varphi (v) \text { für alle } v \in E} { , }
wobei
\mathl{\left\langle - , - \right\rangle}{} die Einschränkung des Standardskalarprodukts auf $E$ bezeichnet. }

}
{} {}




\inputaufgabe
{}
{

Es sei $V$ ein \definitionsverweis {euklidischer Vektorraum}{}{} und
\mavergleichskette
{\vergleichskette
{ U }
{ \subseteq }{ V }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} ein \definitionsverweis {Untervektorraum}{}{,} der mit dem induzierten Skalarprodukt versehen sei. Es sei \maabbdisp {f} {V} {\R } {} eine \definitionsverweis {Linearform}{}{} und
\mavergleichskette
{\vergleichskette
{ v }
{ \in }{ V }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} der zugehörige Gradient im Sinne von Korollar 38.6. Zeige, dass der Gradient
\mavergleichskette
{\vergleichskette
{ u }
{ \in }{ U }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} zur Einschränkung
\mathl{f {{|}}_U}{} die \definitionsverweis {orthogonale Projektion}{}{} von $v$ auf $U$ ist.

}
{} {}




\inputaufgabe
{}
{

Bestimme die \definitionsverweis {Gramsche Matrix}{}{} des \definitionsverweis {Standardskalarproduktes}{}{} im $\R^2$ bezüglich der \definitionsverweis {Basis}{}{} $\begin{pmatrix} 2 \\-3 \end{pmatrix}$ und $\begin{pmatrix} -5 \\1 \end{pmatrix}$.

}
{} {}




\inputaufgabe
{}
{

Es sei $K$ ein \definitionsverweis {Körper}{}{,} $V$ ein \definitionsverweis {endlichdimensionaler}{}{} $K$-\definitionsverweis {Vektor\-raum}{}{} und
\mathl{\left\langle - , - \right\rangle}{} eine \definitionsverweis {Bilinearform}{}{} auf $V$. Zeige, dass
\mathl{\left\langle - , - \right\rangle}{} genau dann \definitionsverweis {symmetrisch}{}{} ist, wenn es eine Basis
\mathl{v_1 , \ldots , v_n}{} von $V$ mit
\mavergleichskettedisp
{\vergleichskette
{ \left\langle v_i , v_j \right\rangle }
{ =} { \left\langle v_j , v_i \right\rangle }
{ } { }
{ } { }
{ } { }
} {}{}{} für alle
\mavergleichskette
{\vergleichskette
{1 }
{ \leq }{ i,j }
{ \leq }{ n }
{ }{ }
{ }{ }
} {}{}{} gibt.

}
{} {}




\inputaufgabe
{}
{

Es sei $V$ ein \definitionsverweis {endlichdimensionaler}{}{} $K$-\definitionsverweis {Vektorraum}{}{} mit einer \definitionsverweis {Bilinearform}{}{}
\mathl{\left\langle - , - \right\rangle}{.} Zeige, dass diese Form genau dann \definitionsverweis {symmetrisch}{}{} ist, wenn die \definitionsverweis {Gramsche Matrix}{}{} von ihr bezüglich einer \definitionsverweis {Basis}{}{} \definitionsverweis {symmetrisch}{}{} ist.

}
{} {}




\inputaufgabe
{}
{

Zeige, dass die \definitionsverweis {Determinante}{}{} in der Dimension zwei, also die Abbildung \maabbeledisp {} {K^2 \times K^2} {K } {( \begin{pmatrix} x_1 \\y_1 \end{pmatrix}, \begin{pmatrix} x_2 \\y_2 \end{pmatrix} )} { x_1y_2 -x_2y_1 } {,} keine \definitionsverweis {symmetrische}{}{} \definitionsverweis {Bilinearform}{}{} ist.

}
{} {}




\inputaufgabe
{}
{

Es sei $K$ ein \definitionsverweis {Körper}{}{,} $V$ ein $K$-\definitionsverweis {Vektorraum}{}{} und
\mathl{\left\langle - , - \right\rangle}{} eine \definitionsverweis {symmetrische Bilinearform}{}{} auf $V$. Zeige, dass der \definitionsverweis {Ausartungsraum}{}{} ein \definitionsverweis {Untervektorraum}{}{} von $V$ ist.

}
{} {}




\inputaufgabe
{}
{

Es sei $K$ ein \definitionsverweis {Körper}{}{} mit einer von $2$ verschiedenen \definitionsverweis {Charakteristik}{}{} und sei
\mathl{\left\langle - , - \right\rangle}{} eine \definitionsverweis {symmetrische}{}{} \definitionsverweis {Bilinearform}{}{} auf einem $K$-\definitionsverweis {Vektorraum}{}{} $V$. Zeige
\mavergleichskettedisp
{\vergleichskette
{ \left\langle v , w \right\rangle }
{ =} { { \frac{ 1 }{ 2 } } { \left( \left\langle v+w , v+w \right\rangle - \left\langle v , v \right\rangle - \left\langle w , w \right\rangle \right) } }
{ } { }
{ } { }
{ } { }
} {}{}{.}

}
{} {}




\inputaufgabegibtloesung
{}
{

Zeige, dass es eine \definitionsverweis {Bilinearform}{}{}
\mathl{\left\langle - , - \right\rangle}{} auf einem Vektorraum $V$ geben kann, die nicht die \definitionsverweis {Nullform}{}{} ist, für die aber
\mavergleichskettedisp
{\vergleichskette
{ \left\langle v , v \right\rangle }
{ =} {0 }
{ } { }
{ } { }
{ } { }
} {}{}{} für alle
\mathl{v \in V}{} ist.

}
{} {}




\inputaufgabegibtloesung
{}
{

Es sei $K$ ein \definitionsverweis {Körper}{}{,} $V$ ein \definitionsverweis {endlichdimensionaler}{}{} $K$-\definitionsverweis {Vektorraum}{}{} und
\mathl{\left\langle - , - \right\rangle}{} eine \definitionsverweis {symmetrische Bilinearform}{}{} auf $V$. Zeige, dass $V$ eine \definitionsverweis {Orthogonalbasis}{}{} besitzt.

}
{} {}




\inputaufgabe
{}
{

Untersuche, welche der folgenden Abbildungen \maabb {\varphi} { \R^2 \times \R^2 } { \R } {} bilinear sind. Wenn ja, so untersuche die jeweilige Abbildung auch auf die Eigenschaften alternierend und symmetrisch. \aufzaehlungdrei{
\mathl{\varphi(x,y):=x_1y_1}{.} }{
\mathl{\varphi(x,y):=x_1x_2+y_1y_2}{.} }{
\mathl{\varphi(x,y):=2x_1y_2 + 3x_2y_1}{.} }

}
{} {}






\zwischenueberschrift{Aufgaben zum Abgeben}




\inputaufgabe
{4}
{

Untersuche, welche der folgenden Abbildungen \maabb {\varphi} { \R^2 \times \R^2 } { \R } {} \definitionsverweis {bilinear}{}{} sind. Wenn ja, so untersuche die jeweilige Abbildung auch auf die Eigenschaften \definitionsverweis {alternierend}{}{} und \definitionsverweis {symmetrisch}{}{.} \aufzaehlungdrei{
\mathl{\varphi(x,y):= x_1-y_1}{.} }{
\mathl{\varphi(x,y):= x_1y_1-x_2y_2}{.} }{
\mathl{\varphi(x,y):= 2x_1y_2-2x_2y_1}{.} }

}
{} {}




\inputaufgabe
{3}
{

Bestimme die \definitionsverweis {Gramsche Matrix}{}{} des \definitionsverweis {Standardskalarproduktes}{}{} im $\R^3$ bezüglich der \definitionsverweis {Basis}{}{} $\begin{pmatrix} 1 \\2\\ 3 \end{pmatrix},\, \begin{pmatrix} 2 \\4\\ 5 \end{pmatrix}$ und $\begin{pmatrix} 0 \\1\\ 5 \end{pmatrix}$.

}
{} {}




\inputaufgabegibtloesung
{3}
{

Es sei $K$ ein \definitionsverweis {Körper}{}{,} dessen \definitionsverweis {Charakteristik}{}{} nicht $2$ sei. Es sei
\mathl{\left\langle - , - \right\rangle}{} eine \definitionsverweis {Bilinearform}{}{} auf einem $K$-\definitionsverweis {Vektorraum}{}{} $V$, die sowohl \definitionsverweis {symmetrisch}{}{} als auch \definitionsverweis {alternierend}{}{} sei. Zeige, dass es sich um die Nullform handelt.

}
{} {}




\inputaufgabe
{2}
{

Zeige, dass der \definitionsverweis {Ausartungsraum}{}{} zu einer \definitionsverweis {symmetrischen Bilinearform}{}{}
\mathl{\left\langle - , - \right\rangle}{} auf einem $K$-\definitionsverweis {Vektorraum}{}{} $V$ gleich dem \definitionsverweis {Kern}{}{} der \definitionsverweis {linearen Abbildung}{}{} \maabbeledisp {} {V} { { V }^{ * } } {v} { \left\langle v , - \right\rangle } {,} ist.

}
{} {}




\inputaufgabe
{3 (1+1+1)}
{

Wir betrachten die \definitionsverweis {Linearform}{}{} \maabbeledisp {L} {\R^2} {\R } {(x,y)} {4x+7y } {.} \aufzaehlungdrei{Bestimme den \definitionsverweis {Linksgradienten}{}{} von $L$ bezüglich der \definitionsverweis {Determinante}{}{.} }{Bestimme den \definitionsverweis {Rechtsgradienten}{}{} von $L$ bezüglich der Determinante. }{Bestimme den \definitionsverweis {Gradienten}{}{} von $L$ bezüglich des \definitionsverweis {Standardskalarproduktes}{}{.} }

}
{} {}

<< | Kurs:Lineare Algebra (Osnabrück 2015-2016)/Teil II | >>

PDF-Version dieses Arbeitsblattes

Zur Vorlesung (PDF)