Kurs:Lineare Algebra (Osnabrück 2015-2016)/Teil II/Vorlesung 38

Aus Wikiversity
Zur Navigation springen Zur Suche springen



Bilinearformen

Reelle Skalarprodukte sind positiv definite symmetrische Bilinearformen. In den folgenden Vorlesungen besprechen wir Bilinearformen allgemein. Neben Skalarprodukten sind die Hesse-Formen wichtig, die in der höherdimensionalen Analysis betrachten werden, um Extrema zu bestimmen und die Minkowski-Formen, mit denen man die spezielle Relativitätstheorie beschreiben kann.


Definition  

Es sei ein Körper und ein -Vektorraum. Eine Abbildung

heißt Bilinearform, wenn für alle die induzierten Abbildungen

und für alle die induzierten Abbildungen

-linear sind.

Bilinear bedeutet einfach multilinear in zwei Komponenten, diese Eigenschaft haben wir schon im Zusammenhang mit Determinanten kennengelernt. Ein extremes Beispiel ist die Nullform, die jedem Paar den Nullwert zuordnet. Es ist einfach, eine Vielzahl von Bilinearformen auf dem anzugeben.


Beispiel  

Sei und seien für fixiert. Dann ist die Zuordnung

eine Bilinearform. Bei

für alle ist dies die Nullform; bei

liegt das Standardskalarprodukt vor (wobei der Ausdruck stets einen Sinn ergibt, aber die Eigenschaft, positiv definit zu sein, gegenstandslos ist). Bei und

spricht man von einer Minkowski-Form. Bei und

handelt es sich um die Determinante.


Eine wichtige Eigenschaft von Bilinearformen, die Skalarprodukte erfüllen, wird in der nächsten Definition formuliert.


Definition  

Sei ein Körper und sei ein -Vektorraum. Eine Bilinearform

heißt nicht ausgeartet, wenn für alle , die induzierten Abbildungen

und für alle , die induzierten Abbildungen

nicht die Nullabbildung sind.

In dieser Vorlesung werden wir für Vektorräume, auf denen eine nicht-ausgeartete Bilinearform gegeben ist, eine bijektive Beziehung zwischen Vektoren und Linearformen beweisen. Dies gilt insbesondere für Skalarprodukte. Generell besteht eine enge Beziehung zwischen Bilinearformen und linearen Abbildungen in den Dualraum.



Lemma  

Es sei ein Körper, ein -Vektorraum mit dem Dualraum . Es sei

eine lineare Abbildung.

Dann ist durch

eine Bilinearform auf gegeben.

Beweis  

Da ist, liefert die Auswertung an einem Vektor ein Element des Grundkörpers. Die Linearität in der zweiten Komponenten beruht direkt darauf, dass zum Dualraum gehört, und die Linearität in der ersten Komponenten beruht auf der Linearität von .




Der Gradient



Lemma  

Es sei ein Körper und ein -Vektorraum, der mit einer Bilinearform versehen sei. Dann gelten folgende Aussagen

  1. Für jeden Vektor sind die Zuordnungen

    und

    -linear.
  2. Die Zuordnung

    ist -linear.

  3. Wenn nicht ausgeartet ist, so ist die Zuordnung in (2) injektiv. Ist zusätzlich endlichdimensional, so ist diese Zuordnung bijektiv.

Beweis  

(1) folgt unmittelbar aus der Bilinearität.
(2). Seien und . Dann ist für jeden Vektor

und dies bedeutet gerade die Linearität der Zuordnung.
Da die Zuordnung nach (2) linear ist, müssen wir zeigen, dass der Kern davon trivial ist. Sei also so, dass die Nullabbildung ist. D.h. für alle . Dann muss aber nach der Definition von nicht ausgeartet sein. Wenn endliche Dimension hat, so liegt eine injektive lineare Abbildung zwischen Vektorräumen der gleichen Dimension vor, und eine solche ist nach Korollar 11.8 bijektiv.


Wenn es also in einem endlichdimensionalen Vektorraum eine nichtausgeartete Bilinearform gibt, so gibt es zu jeder Linearform einen eindeutig bestimmten Vektor, mit dem diese Linearform beschrieben werden kann. Genauer: es gibt dann einen Vektor mit

für alle und einen Vektor mit

In dieser Situation heißt der Linksgradient zu bezüglich der Bilinearform und der Rechtsgradient. Bei einem Skalarprodukt und generell bei einer nichtausgearteten symmetrischen Bilinearform (siehe weiter unten) fallen die beiden Begriffe zusammen, man spricht von dem Gradienten. Für euklidische Vektorräume formulieren wir diese Beziehung noch einmal explizit.


Korollar  

Es sei ein euklidischer Vektorraum und

eine Linearform.

Dann gibt es einen eindeutig bestimmten Vektor mit

Wenn eine Orthonormalbasis von und ist, so ist dieser Vektor gleich .

Beweis  

Dies folgt unmittelbar aus Lemma 38.5  (3). Der Zusatz ist klar wegen




Die Gramsche Matrix

Definition  

Es sei ein Körper, ein endlichdimensionaler -Vektorraum und eine Bilinearform auf . Es sei eine Basis von . Dann heißt die -Matrix

die Gramsche Matrix von bezüglich dieser Basis.

In Beispiel 38.2 bildet die Gramsche Matrix bezüglich der Standardbasis des . Wenn die Gramsche Matrix zu einer Bilinearform bezüglich einer Basis gegeben ist, so kann man daraus für beliebige Vektoren berechnen. Man schreibt und und erhält mit dem allgemeinen Distributivgesetz

Man erhält also den Wert der Bilinearform an zwei Vektoren, indem man die Gramsche Matrix auf das Koordinatentupel des zweiten Vektors anwendet und das Ergebnis (ein Spaltenvektor) mit dem Koordinatentupel des ersten Vektors als Zeilentupel von links multipliziert. Kurz und ungenau ist also



Lemma  

Es sei ein Körper, ein endlichdimensionaler -Vektorraum und eine Bilinearform auf . Es seien und zwei Basen von und es seien bzw. die Gramschen Matrizen von bezüglich dieser Basen. Zwischen den Basiselementen gelte die Beziehungen

die wir durch die Übergangsmatrix ausdrücken.

Dann besteht zwischen den Gramschen Matrizen die Beziehung

Beweis  

Es ist




Eigenschaften von Bilinearformen

Definition  

Es sei ein Körper, ein -Vektorraum und eine Bilinearform auf . Die Bilinearform heißt symmetrisch, wenn

für alle gilt.



Lemma

Es sei ein Körper mit einer von verschiedenen Charakteristik und sei eine symmetrische Bilinearform auf einem -Vektorraum .

Dann gilt die Beziehung

Beweis

Siehe Aufgabe 38.12.



Definition  

Es sei ein endlichdimensionaler -Vektorraum und eine nicht ausgeartete symmetrische Bilinearform auf . Dann nennt man zu einer Linearform

den eindeutig bestimmten Vektor mit

den Gradienten zu bezüglich der Bilinearform.


Definition  

Es sei ein Körper, ein -Vektorraum und eine symmetrische Bilinearform auf . Zwei Vektoren heißen orthogonal, wenn

ist.


Definition  

Es sei ein Körper, ein -Vektorraum und eine symmetrische Bilinearform auf . Eine Basis , von heißt Orthogonalbasis, wenn

für alle

ist.

Für eine symmetrische Bilinearform ist es durchaus möglich, dass, anders als bei Skalarprodukten, ein von verschiedener Vektor zu sich selbst orthogonal ist. Es kann auch, im ausgearteten Fall, von verschiedene Vektoren geben, die orthogonal zu allen Vektoren sind. Wie im Fall eines Skalarproduktes gibt es Orthogonalbasen.


Definition  

Es sei ein Körper, ein -Vektorraum und eine symmetrische Bilinearform auf . Der Untervektorraum

heißt Ausartungsraum zur Bilinearform.

Der Ausartungsraum ist in der Tat ein Untervektorraum von , siehe Aufgabe 38.11.



Satz

Es sei ein Körper, ein endlichdimensionaler -Vektorraum und eine symmetrische Bilinearform auf .

Dann besitzt eine Orthogonalbasis.

Beweis

Siehe Aufgabe 38.14.



<< | Kurs:Lineare Algebra (Osnabrück 2015-2016)/Teil II | >>

PDF-Version dieser Vorlesung

Arbeitsblatt zur Vorlesung (PDF)