Kurs:Mathematik für Anwender (Osnabrück 2011-2012)/Teil I/Arbeitsblatt 15/latex

Aus Wikiversity
Zur Navigation springen Zur Suche springen

\setcounter{section}{15}






\zwischenueberschrift{Aufwärmaufgaben}




\inputaufgabe
{}
{

Zeige, dass eine \definitionsverweis {lineare Funktion}{}{} \maabbeledisp {} {\R} {\R } {x} {ax } {,} \definitionsverweis {stetig}{}{} ist.

}
{} {}




\inputaufgabe
{}
{

Zeige, dass die \definitionsverweis {Funktion}{}{} \maabbeledisp {} {\R } {\R } {x} { \betrag { x } } {,} \definitionsverweis {stetig}{}{} ist.

}
{} {}




\inputaufgabe
{}
{

Zeige, dass die \definitionsverweis {Funktion}{}{} \maabbeledisp {} {\R_{\geq 0} } {\R_{\geq 0} } {x} { \sqrt{x} } {,} \definitionsverweis {stetig}{}{} ist.

}
{} {}




\inputaufgabe
{}
{

Sei
\mathl{T \subseteq \R}{} eine Teilmenge und sei \maabbdisp {f} {T} {\R } {} eine \definitionsverweis {stetige Funktion}{}{.} Es sei
\mathl{x \in T}{} ein Punkt mit
\mathl{f(x) >0}{.} Zeige, dass dann auch
\mathl{f(y) >0}{} für alle
\mathl{y \in T}{} aus einem nichtleeren \definitionsverweis {offenen Intervall}{}{} $]x- \delta, x + \delta[$ gilt.

}
{} {}




\inputaufgabe
{}
{

Es seien $a < b < c$ \definitionsverweis {reelle Zahlen}{}{} und es seien \maabbdisp {g} {[a,b]} {\R } {} und \maabbdisp {h} {[b,c]} {\R } {} \definitionsverweis {stetige Funktionen}{}{} mit $g (b) = h(b)$. Zeige, dass dann die Funktion \maabbdisp {f} {[a,c]} {\R } {} mit
\mathdisp {f(t) = g (t) \text{ für } t \leq b \text{ und } f(t) = h(t) \text{ für } t > b} { }
ebenfalls stetig ist.

}
{} {}




\inputaufgabe
{}
{

Berechne den \definitionsverweis {Grenzwert}{}{} der Folge
\mathdisp {x_n = 5 \left( { \frac{ 2n+1 }{ n } } \right)^3-4\left( { \frac{ 2n+1 }{ n } } \right)^2+2\left( { \frac{ 2n+1 }{ n } } \right)-3} { }
für
\mathl{n \rightarrow \infty}{.}

}
{} {}




\inputaufgabe
{}
{

Es sei \maabbdisp {f} {\R} {\R } {} eine \definitionsverweis {stetige Funktion}{}{,} die nur endlich viele Werte annimmt. Zeige, dass $f$ \definitionsverweis {konstant}{}{} ist.

}
{} {}




\inputaufgabe
{}
{

Man gebe ein Beispiel einer \definitionsverweis {stetigen Funktion}{}{} \maabbdisp {f} {\Q} {\R } {,} die genau zwei Werte annimmt.

}
{} {}




\inputaufgabegibtloesung
{}
{

Zeige, dass die Funktion \maabbdisp {f} {\R} {\R } {} mit
\mathdisp {f(x) = \begin{cases} x ,\, \text{ falls } x\in \Q \, , \\ 0,\, \text{ sonst} \, , \end{cases}} { }
nur im Nullpunkt stetig ist.

}
{} {}




\inputaufgabe
{}
{

Es sei
\mavergleichskette
{\vergleichskette
{ T }
{ \subseteq }{ \R }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} eine Teilmenge und sei
\mavergleichskette
{\vergleichskette
{ a }
{ \in }{ \R }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} ein Punkt. Es sei \maabb {f} {T} {\R } {} eine \definitionsverweis {Funktion}{}{} und
\mathl{b \in \R}{.} Zeige, dass die folgenden Aussagen äquivalent sind. \aufzaehlungzwei {Es ist
\mathdisp {\operatorname{lim}_{ x \rightarrow a } \, f(x) = b} { . }
} {Für jedes
\mathl{\epsilon >0}{} gibt es ein
\mathl{\delta >0}{} derart, dass für alle
\mathl{x \in T}{} mit
\mathl{d(x,a) \leq \delta}{} die Abschätzung
\mathl{d(f(x),b) \leq \epsilon}{} gilt. }

}
{} {}






\zwischenueberschrift{Aufgaben zum Abgeben}




\inputaufgabe
{2}
{

Bestimme, für welche Punkte
\mathl{x \in \R}{} die durch
\mathdisp {f(x) = \begin{cases} 1 \text{ für } x \leq - 1 \, , \\ x^2 \text{ für } - 1< x < 2 \, , \\ -2x+7 \text{ für } x \geq 2 \, , \end{cases}} { }
definierte Funktion \definitionsverweis {stetig}{}{} ist.

}
{} {}




\inputaufgabe
{3}
{

Bestimme den \definitionsverweis {Grenzwert}{}{} der durch
\mathdisp {b_n =2a_n^4-6 a_n^3+a_n^2-5a_n+3} { , }
definierten \definitionsverweis {Folge}{}{,} wobei
\mathdisp {a_n = \frac{3n^3-5n^2+7}{4n^3+2n-1}} { }
ist.

}
{} {}




\inputaufgabe
{3}
{

Zeige, dass die Funktion \maabb {f} {\R} {\R } {} mit
\mathdisp {f(x) = \begin{cases} 1, \text{ falls } x \in \Q \, , \\ 0 \, \text{ sonst} \, , \end{cases}} { }
in keinem Punkt $x \in \R$ \definitionsverweis {stetig}{}{} ist.

}
{} {}




\inputaufgabe
{3}
{

Entscheide, ob die \definitionsverweis {Folge}{}{}
\mathdisp {a_n = \sqrt{n+1} - \sqrt{n}} { }
\definitionsverweis {konvergiert}{}{,} und bestimme gegebenenfalls den \definitionsverweis {Grenzwert}{}{.}

}
{} {}




\inputaufgabe
{4}
{

Bestimme den \definitionsverweis {Grenzwert}{}{} der \definitionsverweis {rationalen Funktion}{}{}
\mathdisp {\frac{ 2x^3+3x^2-1}{ x^3-x^2+x+3 }} { }
im Punkt $a=-1$.

}
{} {}



<< | Kurs:Mathematik für Anwender (Osnabrück 2011-2012)/Teil I | >>

PDF-Version dieses Arbeitsblattes (PDF englisch)

Zur Vorlesung (PDF)