Kurs:Mathematik für Anwender (Osnabrück 2019-2020)/Teil II/Arbeitsblatt 52/latex

Aus Wikiversity

\setcounter{section}{52}






\zwischenueberschrift{Übungsaufgaben}

Wenn in den folgenden Aufgaben nach Extrema gefragt wird, so ist damit gemeint, dass man die Funktionen auf (isolierte) lokale und globale Extrema untersuchen soll. Zugleich soll man, im differenzierbaren Fall, die kritischen Punkte bestimmen.


\inputaufgabe
{}
{

Untersuche die Addition \maabbeledisp {+} {\R^2} { \R } {(x,y)} {x+y } {,} und die Multiplikation \maabbeledisp {\cdot} { \R^2 } { \R } {(x,y)} {x \cdot y } {,} auf \definitionsverweis {kritische Punkte}{}{} und auf \definitionsverweis {Extrema}{}{.}

}
{} {}




\inputaufgabe
{}
{

Untersuche die \definitionsverweis {Funktion}{}{} \maabbeledisp {f} {\R^2} {\R } {(x,y)} {x^2-y^2 } {,} auf \definitionsverweis {Extrema}{}{.}

}
{} {}




\inputaufgabe
{}
{

Untersuche die \definitionsverweis {Funktion}{}{} \maabbeledisp {f} {\R^2} {\R } {(x,y)} {x^2-y^4 } {,} auf \definitionsverweis {Extrema}{}{.}

}
{} {}




\inputaufgabe
{}
{

Untersuche die \definitionsverweis {Funktion}{}{} \maabbeledisp {f} {\R^2} {\R } {(x,y)} {2x^2+3y^2+5xy } {,} auf \definitionsverweis {Extrema}{}{.}

}
{} {}




\inputaufgabe
{}
{

Untersuche die \definitionsverweis {Funktion}{}{} \maabbeledisp {f} {\R^2} {\R } {(x,y)} {2x^2+3y^2+4xy } {,} auf \definitionsverweis {Extrema}{}{.}

}
{} {}




\inputaufgabegibtloesung
{}
{

Bestimme die \definitionsverweis {kritischen Punkte}{}{} der Funktion \maabbeledisp {\varphi} {\R^2} {\R } {(x,y)} {3x^2-2xy-y^2+5x } {,} und entscheide, ob in diesen kritischen Punkten ein \definitionsverweis {lokales Extremum}{}{} vorliegt.

}
{} {}




\inputaufgabegibtloesung
{}
{

Wir betrachten die Abbildung \maabbeledisp {f} {\R \times \R_+ \times \R} {\R } {(x,y,z)} { { \frac{ xz }{ x^2+y^2 } } } {,} \zusatzklammer {es ist also
\mathl{y >0}{}} {} {.}

a) Berechne die \definitionsverweis {partiellen Ableitungen}{}{} von $f$ und stelle den \definitionsverweis {Gradienten}{}{} zu $f$ auf.

b) Bestimme die \definitionsverweis {isolierten}{}{} \definitionsverweis {lokalen Extrema}{}{} von $f$.

}
{} {}




\inputaufgabegibtloesung
{}
{

Untersuche die \definitionsverweis {Funktion}{}{} \maabbeledisp {f} {\R^2} {\R } {(x,y)} {-3x^2+2xy-7y^2+x } {,} auf \definitionsverweis {Extrema}{}{.}

}
{} {}




\inputaufgabe
{}
{

Man untersuche die Funktion \maabbeledisp {} {\R_+ \times \R} {\R } {(x,y)} { x^y } {,} auf Extrema \zusatzklammer {vergleiche Beispiel 52.4} {} {,} indem man die Funktion als Hintereinanderschaltung
\mathdisp {\R_+ \times \R \longrightarrow \R \times \R \longrightarrow \R \longrightarrow \R} { }
mit
\mathl{(x,y) \mapsto ( \ln x,y)}{,}
\mathl{(u,v) \mapsto (uv)}{,}
\mathl{z \mapsto e^z}{} auffasst und Aufgabe 51.1 und Aufgabe 51.2 heranzieht.

}
{} {}




\inputaufgabe
{}
{

Bestimme den \definitionsverweis {Typ}{}{} der \definitionsverweis {Hesse-Form}{}{} zur Funktion \maabbeledisp {f} {\R^2} {\R } {(x,y)} {x^2y-xy^2+x^2-y^3 } {,} in jedem Punkt.

}
{} {}




\inputaufgabegibtloesung
{}
{

Wir betrachten die \definitionsverweis {Determinante}{}{} für $2 \times 2$-\definitionsverweis {Matrizen}{}{} als Funktion \maabbeledisp {\det} { \operatorname{Mat}_{ 2 } (\R) = \R^4 } { \R } { \begin{pmatrix} x & y \\ z & w \end{pmatrix} } { xw-zy } {.} \aufzaehlungdrei{Bestimme die \definitionsverweis {Jacobi-Matrix}{}{} zu
\mathl{\det}{} und die \definitionsverweis {kritischen Punkte}{}{.} }{Untersuche
\mathl{\det}{} auf lokale Extrema. Bestimme insbesondere den \definitionsverweis {Typ}{}{} der \definitionsverweis {Hesse-Matrix}{}{} im Nullpunkt. }{Finde einen zweidimensionalen Untervektorraum
\mavergleichskettedisp
{\vergleichskette
{U }
{ \subseteq} {\operatorname{Mat}_{ 2 } (\R) }
{ } { }
{ } { }
{ } { }
} {}{}{,} auf dem die \zusatzklammer {Einschränkung der} {} {} Determinante ein \definitionsverweis {lokales Minimum}{}{} besitzt. }

}
{} {}




\inputaufgabegibtloesung
{}
{

Man gebe für vorgegebene natürliche Zahlen
\mathl{p,q,n}{} mit
\mavergleichskette
{\vergleichskette
{p+q }
{ \leq }{n }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} eine zweimal \definitionsverweis {stetig differenzierbare Funktion}{}{} \maabbdisp {f} {\R^n} {\R } {,} deren \definitionsverweis {Hesse-Form}{}{} im Nullpunkt den \definitionsverweis {Typ}{}{}
\mathl{(p,q)}{} besitzt.

}
{} {}




\inputaufgabe
{}
{

Es sei \maabbdisp {f} {\R^n} {\R } {} eine zweimal \definitionsverweis {stetig differenzierbare Funktion}{}{} und
\mathl{P \in \R^n}{} ein \definitionsverweis {kritischer Punkt}{}{.} Es sei
\mathl{v \in \R^n}{} ein \definitionsverweis {Eigenvektor}{}{} zur \definitionsverweis {Hesse-Matrix}{}{} in $P$ mit einem positiven \definitionsverweis {Eigenwert}{}{.} Zeige, dass $f$ in $P$ kein \definitionsverweis {lokales Maximum}{}{} besitzt.

}
{} {}





\inputaufgabegibtloesung
{}
{

Es sei \maabbdisp {f} {G} {\R } {} eine zweimal \definitionsverweis {stetig differenzierbare Funktion}{}{,} wobei
\mathl{G \subseteq \R^n}{} eine \definitionsverweis {offene Menge}{}{} sei. Zeige, dass für
\mathl{P \in G}{} und
\mathl{v \in V}{} die Beziehung
\mavergleichskettedisp
{\vergleichskette
{ \sum_{ r \in \N^n,\, \betrag { \, r \, } = 2 } { \frac{ 1 }{ r! } } D^r f(P) \cdot v^r }
{ =} { { \frac{ 1 }{ 2 } } \operatorname{Hess}_{ P } \, f ( v,v) }
{ } { }
{ } { }
{ } {}
} {}{}{} gilt.

}
{} {}




\inputaufgabe
{}
{

Untersuche die \definitionsverweis {Funktion}{}{} \maabbeledisp {f} {\R^2} {\R } {(x,y)} {xy^2-x^3y } {,} auf \definitionsverweis {Extrema}{}{.}

}
{} {}




\inputaufgabegibtloesung
{}
{

Untersuche die \definitionsverweis {Funktion}{}{} \maabbeledisp {f} {\R^2} {\R } {(x,y)} {x^2+xy-6y^2-y } {,} auf \definitionsverweis {kritische Punkte}{}{} und \definitionsverweis {Extrema}{}{.}

}
{} {}




\inputaufgabegibtloesung
{}
{

Es sei \maabbdisp {f} {\R^n} {\R } {} eine \definitionsverweis {stetig differenzierbare Funktion}{}{} mit
\mavergleichskettedisp
{\vergleichskette
{f(P) }
{ =} {f(-P) }
{ } { }
{ } { }
{ } { }
} {}{}{} für alle
\mathl{P \in \R^n}{.}

a) Zeige, dass $f$ in $0$ einen kritischen Punkt besitzt.

b) Man gebe ein Beispiel für eine solche Funktion, die in $0$ ein isoliertes lokales Maximum besitzt.

c) Man gebe ein Beispiel für eine solche Funktion, die in $0$ kein Extremum besitzt.

}
{} {}




\inputaufgabegibtloesung
{}
{

Bestimme die lokalen und globalen Extrema der auf der \definitionsverweis {abgeschlossenen Kreisscheibe}{}{}
\mavergleichskette
{\vergleichskette
{ B \left( 0,1 \right) }
{ = }{ { \left\{ (x,y) \in \R^2 \mid x^2+y^2 \leq 1 \right\} } }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} definierten Funktion \maabbeledisp {f} {B \left( 0,1 \right) } {\R } {(x,y)} {x^2+y^3-y^2-y } {.}

}
{} {}




\inputaufgabe
{}
{

Bestimme für die \definitionsverweis {Funktion}{}{} \maabbeledisp {f} {D} {\R } {(x,y)} {xy \sqrt{3- x^2-y^2} } {,} den maximalen Definitionsbereich
\mathl{D\subseteq \R^2}{} und untersuche die Funktion auf \definitionsverweis {Extrema}{}{.}

}
{} {}




\inputaufgabe
{}
{

Wir betrachten die Funktion \maabbeledisp {f} {[0,1]} {\R } {t} {1-t^2 } {.} Für welches
\mavergleichskette
{\vergleichskette
{ x }
{ \in }{ [0,1] }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} besitzt die zugehörige zweistufige \zusatzklammer {maximale} {} {} \definitionsverweis {untere Treppenfunktion}{}{} zu $f$ den maximalen Flächeninhalt? Welchen Wert besitzt er?

}
{} {}





\inputaufgabegibtloesung
{}
{

Wir betrachten die Funktion \maabbeledisp {f} {[0,1]} {\R } {t} {1-t^2 } {.} Für welche
\mathbed {x,y \in [0,1]} {}
{x <y} {}
{} {} {} {,} besitzt die zugehörige dreistufige \zusatzklammer {maximale} {} {} \definitionsverweis {untere Treppenfunktion}{}{} zu $f$ den maximalen Flächeninhalt? Welchen Wert besitzt er?

}
{} {}




\inputaufgabe
{}
{

Es sei $V$ ein \definitionsverweis {endlichdimensionaler}{}{} \definitionsverweis {reeller Vektorraum}{}{,}
\mathl{G \subseteq V}{} \definitionsverweis {offen}{}{,} und
\mathl{P \in G}{.} Man gebe ein Beispiel von zwei zweimal \definitionsverweis {stetig differenzierbaren Funktionen}{}{} \maabbdisp {f,g} {G} {\R } {} an derart, dass ihre quadratischen Approximationen in $P$ übereinstimmen, und die eine Funktion ein \definitionsverweis {Extremum}{}{} in $P$ besitzt, die andere nicht.

}
{} {}




\inputaufgabe
{}
{

Es sei $V$ ein \definitionsverweis {endlichdimensionaler}{}{} \definitionsverweis {reeller Vektorraum}{}{,}
\mathl{\dim_{ \! } { \left( V \right) } \geq 2}{,}
\mathl{G \subseteq V}{} \definitionsverweis {offen}{}{,} und
\mathl{P \in G}{.} Man gebe ein Beispiel von zwei zweimal \definitionsverweis {stetig differenzierbaren Funktionen}{}{} \maabbdisp {f,g} {G} {\R } {} an derart, dass ihre quadratischen Approximationen in $P$ übereinstimmen, und die eine Funktion ein \definitionsverweis {Extremum}{}{} in $P$ besitzt, die andere nicht.

}
{} {}






\zwischenueberschrift{Aufgaben zum Abgeben}




\inputaufgabe
{4}
{

Untersuche die \definitionsverweis {Funktion}{}{} \maabbeledisp {f} {\R^2} {\R } {(x,y)} {x^2+9y^2+6xy } {,} auf \definitionsverweis {Extrema}{}{.}

}
{} {}




\inputaufgabe
{4}
{

Es sei
\mathl{I = {] {- { \frac{ \pi }{ 2 } }} , { \frac{ \pi }{ 2 } } [}}{.} Untersuche die \definitionsverweis {Funktion}{}{} \maabbeledisp {f} {I \times I } {\R } {(x,y)} { { \frac{ \cos x }{ \cos y } } } {,} auf \definitionsverweis {Extrema}{}{.}

}
{} {}




\inputaufgabe
{5}
{

Wir betrachten die Funktion \maabbeledisp {f} {[0,1]} {\R } {t} {t^2 } {.} Für welche
\mathbed {x,y \in {]0,1[}} {}
{x <y} {}
{} {} {} {,} besitzt die zugehörige dreistufige \zusatzklammer {maximale} {} {} \definitionsverweis {untere Treppenfunktion}{}{} zu $f$ den maximalen Flächeninhalt? Welchen Wert besitzt er?

}
{} {}




\inputaufgabe
{5}
{

Sei \maabbdisp {h} {\R_{\geq 0}} {\R } {} eine \definitionsverweis {Funktion}{}{} und betrachte \maabbeledisp {f} {\R^2} {\R } {(x,y)} {h(x^2+y^2) } {.} Zeige, dass $f$ allenfalls im Nullpunkt
\mathl{(0,0)}{} ein \definitionsverweis {isoliertes lokales Extremum}{}{} besitzen kann, und dass dies genau dann der Fall ist, wenn $h$ in $0$ ein isoliertes lokales Extremum besitzt.

}
{} {}




\inputaufgabe
{5}
{

Es sei \maabbdisp {\varphi} {\R^2} {\R } {} eine \definitionsverweis {stetige Funktion}{}{} und es sei
\mathl{P \in \R^2}{} ein isolierter Punkt, d.h. es gebe eine offene Umgebung
\mathl{P \in U}{} derart, dass
\mathl{\varphi(Q) \neq \varphi(P)}{} ist für alle
\mathbed {Q\in U} {}
{Q \neq P} {}
{} {} {} {.} Zeige, dass dann $\varphi$ in $P$ ein \definitionsverweis {isoliertes lokales Extremum}{}{} besitzt.

}
{} {}